A New “Annealed” Heuristic for the Maximum Clique Problem

  • Immanuel M. Bomze
  • Marco Budinich
  • Marcello Pelillo
  • Claudio Rossi
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 42)


We propose a new heuristic for approximating the maximum clique problem based on a detailed analysis of a class of continuous optimization models which provide a complete characterization of solutions to this NP-hard combinatorial problem. We start from a known continuous formulation of the maximum clique, and tackle the search for local solutions with replicator dynamics Hereby, we add to the objective used in previous works a regularization term that controls the global shape of the energy landscape, that is the function actually maximized by the dynamics. The parameter controlling the regularization is changed during the evolution of the dynamical system to render inefficient local solutions (which formerly were stable) unstable, thus conducting the system to escape from sub-optimal points, and so to improve the final results. The role of this parameter is thus superficially similar to that of temperature in simulated annealing in the sense that its variation allows to find better solutions for the problem at hand. We report on the performances of this approach when applied to selected DIMACS benchmark graphs.


Maximum Clique Heuristic. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. E. Baum and J. A. Eagon (1967), “An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology,” Bull. Amer. Math. Soc., vol. 73, pp. 360–363.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    L. E. Baum and G. R. Sell (1968), “Growth transformations for functions on manifolds,” Pacif. J. Math., vol. 27, no. 2, pp. 211–227.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    I. M. Bomze (1997), “Evolution towards the maximum clique,” J. Global Optim., vol. 10, pp. 143–164.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    I. M. Bomze, M. Pelillo, and R. Giacomini (1997), “Evolutionary approach to the maximum clique problem: Empirical evidence on a larger scale,” in: I. M. Bomze, T. Csendes, R. Horst, and P. M. Pardalos (Eds.), Developments in Global Optimization. Kluwer, Dordrecht, pp. 95–108.CrossRefGoogle Scholar
  5. [5]
    I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo (1999), “The maximum clique problem,” to appear in: D. Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization (Vol. 4) Kluwer, Dordrecht.Google Scholar
  6. [6]
    I. M. Bomze, M. Budinich, M. Pelillo and C. Rossi (1999), “Annealed Replication: a New Heuristic for the Maximum Clique Problem,” to appear in: Discrete Applied Mathematics. Google Scholar
  7. [7]
    I. M. Bomze and F. Rendi (1998), “Replicator dynamics for evolution towards the maximum clique: variations and experiments,” in: R. De Leone, A. Murli, P.M. Pardalos, and G. Toraldo (Eds.), High Performance Algorithms and Software in Nonlinear Optimization, Kluwer, Dordrecht, pp. 53–68.CrossRefGoogle Scholar
  8. [8]
    M. Budinich (1999), “Bounds on the maximum clique of a graph,” submitted (see
  9. [9]
    J. F. Crow and M. Kimura. (1970), An Introduction to Population Genetics Theory. Harper & Row, New York.Google Scholar
  10. [10]
    R. A. Fisher. (1930), The Genetical Theory of Natural Selection. Clarendon Press, Oxford.zbMATHGoogle Scholar
  11. [11]
    A. H. Gee and R. W. Prager (1994), “Polyhedral combinatorics and neural networks,” Neural Computation, vol. 6, pp. 161–180.CrossRefGoogle Scholar
  12. [12]
    L. E. Gibbons, D. W. Hearn, and P. M. Pardalos (1996), “A continuous based heuristic for the maximum clique problem,” In: D. S. Johnson and M. Trick (Eds.), Cliques,Coloring, and Satisfiability—Second DIMACS Implementation Challenge. American Mathematical Society, Providence, RI, pp. 103–124.Google Scholar
  13. [13]
    L. E. Gibbons, D. W. Hearn, P. M. Pardalos and M. V. Ramana (1997), “Continuous characterizations of the maximum clique problem,” Math. Oper. Res.,vol. 22, no. 3, pp. 754–768.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    J. Hofbauer and K. Sigmund. (1998), The Theory of Evolution and Dynamical Systems,Cambridge University Press, Cambridge, UK.Google Scholar
  15. [15]
    D. S. Johnson and M. A. Trick (Eds.) (1996), Cliques, Coloring,and Satisfiability: Second DIMACS Implementation Challenge, DI- MACS Series in Discrete Mathematics and Theoretical Computer Science, Vol 26, American Mathematical Society, Providence, RI (sec also
  16. [16]
    S. Karlin (1984), “Mathematical models, problems and controversies of evolutionary theory,” Bull. Amer. Math. Soc., vol. 10, pp. 221–273.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    M. Kimura (1958), “On the change of population fitness by natural selection,” Heredity,vol. 12, pp. 145–167.CrossRefGoogle Scholar
  18. [18]
    S. Kirkpatrick, C.D. Gelatt Jr., and M. P. Vecchi (1983), “Optimization by simulated annealing,” Science vol. 220(4598), pp. 671–679.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    S. E. Levinson, L. R. Rabiner, and M. M. Sondhi (1983), “An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition,” Bell Syst. Tech. J., vol. 62, pp. 1035–1074.MathSciNetzbMATHGoogle Scholar
  20. [20]
    D. W. Matula (1976), “The largest clique size in a random graph,” Technical Report CS 7608, Department of Computer Science, Southern Methodist University.Google Scholar
  21. [21]
    T. S. Motzkin and E. G. Straus (1965), “Maxima for graphs and a new proof of a theorem of Turin,” Canad. J. Math.,vol. 17, pp. 533–540.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    C. H. Papadimitriou and K. Steiglitz (1982), Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  23. [23]
    P. M. Pardalos (1996), “Continuous approaches to discrete optimization problems,” In: G. Di Pillo and F. Giannessi (Eds.), Nonlinear Or ‘imization and Applications. Plenum Press, New York, pp. 313–328.Google Scholar
  24. [24]
    P. M. Pardalos and A. T. Phillips (1990), “A global optimization approach for solving the maximum clique problem,” Int. J. Computer Math., vol. 33, pp. 209–216.zbMATHCrossRefGoogle Scholar
  25. [25]
    P. M. Pardalos and J. Xue (1994), “The maximum clique problem,” J. Global Optim., vol. 4, pp. 301–328.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    M. Pelillo (1995), “Relaxation labeling networks for the maximum clique problem,” J. Artif. Neural Networks, vol. 2, pp. 313–328.Google Scholar
  27. [27]
    M. Pelillo (1997), “The dynamics of nonlinear relaxation labeling processes,” J. Math. Imaging Vision,vol. 7, no. 4, pp. 309–323.MathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Pelillo and A. Jagota (1995), “Feasible and infeasible maxima in a quadratic program for maximum clique,” J. Artif. Neural Networks, vol. 2, pp. 411–419.Google Scholar
  29. [29]
    P. Taylor and L. Jonker (1978), “Evolutionarily stable strategies and game dynamics,” Math. Biosci.,vol. 40, pp. 145–156.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    A. Torsello and M. Pelillo (1999), “Continuous-time relaxation labeling processes,” Pattern Recognition, accepted for publication.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Immanuel M. Bomze
    • 1
  • Marco Budinich
    • 2
  • Marcello Pelillo
    • 3
  • Claudio Rossi
    • 3
  1. 1.Institut für Statistik, Operations Research und ComputerverfahrenUniversität WienWienAustria
  2. 2.Dipartimento di FisicaUniversità di TriesteTriesteItaly
  3. 3.Dipartimento di InformaticaUniversità Ca’ Foscari di VeneziaVenezia MestreItaly

Personalised recommendations