Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 41))

  • 386 Accesses

Abstract

We will prove in this chapter that, the general (nonlinear or linear) complementarity problem is equivalent (under some assumptions) to different problems, as for example, a fixed point problem, a variational inequality, the least element problem, a minimization problem, a functional equation etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ADAMS, R. A. 1. Sobolev Space. Academic Press (1975).

    Google Scholar 

  • CHEN, B., CHEN, X. and KANZOW, C. 1. A penalized Fischer-Burmeister Ncp-function: Theoretical investigation and numerical results. Paper presented at the International Symposium on Mathematical Programming, Lausanne, Switzerland, August 24–29 (1997).

    Google Scholar 

  • CRYER, C. W. and DEMPSTER, M. A. H. 1. Equivalence of linear complementarity problems and linear programs in vector lattice Hilbert space. Siam J. Control Opt., 18, Nr. 1 (1980), 76–90.

    Article  MathSciNet  MATH  Google Scholar 

  • DE LUCA, T., FACCHINEI, F. and KANZOW, C. 1. A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Programming 75 (1996), 407–439.

    Article  MathSciNet  MATH  Google Scholar 

  • EVTUSHENKO, YU. G. and PURTOV, V. A. 1. Sufficient conditions for a minimum for nonlinear programming problems. Soviet MathematicsDoklady, 30 (1984), 313–316

    MATH  Google Scholar 

  • FACCHINEI, F. and KANZOW, C. 1. A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math. Programming, 76 (1997), 493–512.

    MathSciNet  MATH  Google Scholar 

  • FACCHINEI, F. and KANZOW, C. 2. Beyond monotonicity in regularization methods for nonlinear complementarity problems. o appear. In: Siam J. Control and Opt.

    Google Scholar 

  • FISCHER, A. 1. A special Newton-type optimization method. Optimization, 24 (1992), 269–284.

    Article  MathSciNet  MATH  Google Scholar 

  • FISCHER, A. 2. Solving linear complementarity problems by imbedding. (Preprint, Dept. of Math. Dresden University of Technology, Germany, (1993).

    Google Scholar 

  • FISCHER, A. 3. A globally and locally Q-quadratically convergent Newton-type method for positive semi-definite linear complementarity problems. (Preprint, Technische Univ., Dresden, (1992)).

    Google Scholar 

  • FISCHER, A. 4. On the local super-linear convergence of a Newton-type method for Lcp under weak conditions. Optimization Methods and Software, 6 (1995). 83–107.

    Article  Google Scholar 

  • FISCHER, A. 5. An Ncp-function and its use for the solution of complementarity problems. In: Recent Advances in Non-smooth Optimization (Eds. D. Z. Du, L. Qi and R. S. Womersley), World Scientific, (1995), 88–105.

    Chapter  Google Scholar 

  • FISCHER, A. 6. A Newton-type method for positive-semidefinite linear complementarity problems. J. Opt. Theory Appl. 86 Nr. 3 (1995), 585–608.

    Article  MATH  Google Scholar 

  • FISCHER, A. 7. Solution of monotone complementarity problems with locally Lipschitzian functions. Math. Programming 76 (1997), 513–532.

    MathSciNet  MATH  Google Scholar 

  • FISCHER, A. 8. Merit functions and stability for complementarity problems. (Preprint, Institut für Mathematik, Universität Dortmund, (1997)).

    Google Scholar 

  • FISCHER, A. and KANZOW, C. 1. On finite termination of an iterative method for linear complementarity problems. Math. Programming, 74 (1996), 279–292.

    MathSciNet  MATH  Google Scholar 

  • FUKUSHIMA, M. 1. Merit functions for variational inequality and complementarity problems. In: Nonlinear Optimization and Applications, (Eds. G. Di Pillo and F. Giannessi), Plenum Press, (1996), 155–170.

    Google Scholar 

  • HOLMES, R. B. 1. Geometric Functional Analysis and its Applications. Springer-Verlag (1975).

    Book  MATH  Google Scholar 

  • HYERS, D. H., ISAC, G. and RASSIAS, M. TH. 1. Topics in Nonlinear Analysis and Applications. World Scientific, Singapore, New Jersey, London, Hong Kong (1997).

    Google Scholar 

  • ISAC, G. 1. Complementarity problem and coincidence equations on convex cones. Boll. U. M. I. (6) 5-B (1986), 925–945.

    Google Scholar 

  • ISAC, G. 2. Fixed point theory, coincidence equations on convex cones and complementarity problem. Contemporary Mathematics, Vol. 72 (1988) 139–155.

    Article  MathSciNet  Google Scholar 

  • ISAC, G. 3. Complementarity Problems. Lecture Notes in Mathematics Nr. 1528, Springer-Verlag (1992).

    MATH  Google Scholar 

  • ISAC, G. 4. A special variational inequality and the implicit complementarity problem. J. Fac. Sci. Univ. Tokyo, Sect Ia, Math. 37 (1990), 109–127.

    MathSciNet  MATH  Google Scholar 

  • ISAC, G. and GOELEVEN, D. 1. The implicit general order complementarity problem, models and iterative methods. Annal. Oper. Res. 44 (1993), 63–93.

    Article  MathSciNet  MATH  Google Scholar 

  • KANZOW, C. 1. Some noninterior continuation methods for linear complementarity problems. Siam J. Matrix Analysis Appl. 17 (1996), 851–868.

    Article  MathSciNet  MATH  Google Scholar 

  • KANZOW, C. 2. A new approach to continuation methods for complementarity problems with uniform P-function. Operation Research Letters, 20 (1997), 85–92.

    Article  MathSciNet  MATH  Google Scholar 

  • KANZOW, C. 3. An inexact Qp-based method for nonlinear complementarity problems. (To appear. In: Numerische Mathematik.)

    Google Scholar 

  • KANZOW, C. and KLEINMICHEL, H. 1. A new class of semismooth Newton-type methods for nonlinear complementarity problems. To appear. In: Computational Optimization and Applications.

    Google Scholar 

  • KANZOW, C. and PIEPER, H. 1. Jacobian smoothing methods for nonlinear complementarity problems. To appear. In: Siam J. Opt. Control.

    Google Scholar 

  • KANZOW, C., YAMASHITA, N. and FUKUSHIMA, M. 1. New Ncpfunctions and their properties. J. Opt. Theory Appl. 94 Nr. 1 (1997), 115–135.

    Article  MathSciNet  MATH  Google Scholar 

  • KANZOW, C and ZUPKE, M. 1. Inexact trust-region methods for nonlinear complementarity problems. To appear. In: Reformulation-Nonsmooth. Piecewise Smooth. Semismooth and Smoothing Methods (Eds. M. Fukushima and L. Qi), Kluwer Academic Publishers.

    Google Scholar 

  • KELLEY, J. L. and NAMIOKA, I. 1. Linear Topological Spaces. Springer-Verlag, NewYork (1976).

    Google Scholar 

  • LEWY, H. and STAMPACCHIA, G. 1. On the regularity of the solution of a variational inequality. Comm. Pure Appl. Math. ,22 (1969), 153–188.

    Article  MathSciNet  MATH  Google Scholar 

  • LIONS, J. L. and MAGENES, E. 1. Non-homogeneous Boundary Value Problems and Applications. Vol. I, Springer-Verlag (1972).

    Book  Google Scholar 

  • MANGASARIAN, O. L. 1. Equivalence of the complementarity problem to a system of nonlinear equations. Siam J. Appl. Math. 31 (1976), 89–92.

    Article  MathSciNet  MATH  Google Scholar 

  • MORé, J. J. 1. Global methods for nonlinear complementarity problems. Math. Oper. Res. 21 Nr.3 (1996), 589–614.

    Article  MathSciNet  MATH  Google Scholar 

  • MOSCO, U. 1. Implicit variational problems and quasi-variational inequalities. Lecture Notes in Math. Vol. 543, Springer-Verlag, Berlin, (176).

    Google Scholar 

  • PANG, J. S. and RALPH, D. 1. Piecewise smoothness, local invertibility and parametric analysis of normal maps. Math. Oper. Res. 21 Nr. 2 (1996), 401–426.

    Article  MathSciNet  MATH  Google Scholar 

  • RHEINBOLDT, W. C. 1. On M-function and their applications to nonlinear Gauss-Seidel iterations and to network flows. J. Mah. Anal. Appl. 32 (1970), 274–304.

    Article  MathSciNet  MATH  Google Scholar 

  • RIDDELL, R. C. 1. Equivalence of nonlinear complementarity problems and least element problems in Banach lattices. Math. Oper. Res. 6 Nr. 3 (1981), 462–474.

    Article  MathSciNet  MATH  Google Scholar 

  • ROBINSON, S. M. 1. Homeomorphism conditions for normal maps of polyhedra. In: Optimization and Nonlinear Analysis (Eds. A. Joffe, M. Marcus and S. Reich), Longman, London, (1992), 240–248.

    Google Scholar 

  • ROBINSON, S. M. 2. Normal maps induced by linear transformations. Math. Oper. Res. 17 Nr. 3 (1992), 691–714.

    Article  MathSciNet  MATH  Google Scholar 

  • ROBINSON, S. M. 3. Nonsingularitv and symmetry for linear normal maps. Math. Programming, 62 (1993), 415–425.

    Article  MathSciNet  MATH  Google Scholar 

  • ROBINSON, S. M. 4. Sensitivity analysis of variational inequalities by normal-map techniques. In: Variational Inequalities and Network Equilibrium Problems, (Eds. F. Giannessi and A. Maugeri), Plenum Press, New York (1995), 257–269.

    Google Scholar 

  • SHI, P. 1. Equivalence of variational inequalities with Wiener-Hopf equations. Proceed. Amer. Math. Soc., 111 Nr. 2 (1991), 339–346.

    Article  MATH  Google Scholar 

  • VAINBERG, M. M. 1. Variational Methods for the Study of Nonlinear Operators. Holden-Day Inc., San Francisco, London, Amsterdam (1964).

    MATH  Google Scholar 

  • YAMASHITA, N. 1. Some properties of the restricted Ncp-functions for the nonlinear complementarity problem. (Preprint, Department of Applied Mathematics and Physics, Graduate School of Engineering, Kyoto University, Kyoto 606–01, Japan, (1996)).

    Google Scholar 

  • ZARANTONELLO, E. H. 1. Projections on convex sets in Hilbert space and spectral theory. In: (E. H. Zarantonello (Ed.), Contributions to Nonlinear Functional Analysis, Academic Press, (1971), 237–424.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Isac, G. (2000). Equivalences. In: Topological Methods in Complementarity Theory. Nonconvex Optimization and Its Applications, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3141-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3141-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4828-1

  • Online ISBN: 978-1-4757-3141-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics