Advertisement

Other Topological Results in Complementarity Theory

  • George Isac
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 41)

Abstract

We will present in this chapter some recent results in complementarity theory, based also on topological methods. Each subject may be considered as the beginning of new researches on complementarity problems.

Keywords

Complementarity Problem Linear Complementarity Problem Topological Method Mountain Pass Theorem Exceptional Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AMBROSETTI, A. and RABINOWITZ, P. 1. Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349–381.MathSciNetzbMATHCrossRefGoogle Scholar
  2. CAO, M. and FERRIS, M. C. 1. P 0 -matrices and the liner complementarity problem. Linear Algebra Appl., 246 (1996), 299–312.MathSciNetzbMATHCrossRefGoogle Scholar
  3. COTTLE, R. W., PANG, J. S. and STONE, R. E. 1. The Linear Complementarity Problem. Academic Press (1992).zbMATHGoogle Scholar
  4. DUGUNDJI, J. 1. Topology. Allyn and Bacon, Inc., Boston (1970).Google Scholar
  5. EKELAND, I. 1. Convexity Methods in Hamiltonian Mechanics. Springer-Verlag, Berlin (1990).CrossRefGoogle Scholar
  6. FACCHINEI, F. 1. Structural and stability properties of P 0 -nonlinear complementarity problems. Preprint, Universita di Roma “La Sapienza”, Dipartimento di Informatica et Saistemistica, (Italy), (1997)Google Scholar
  7. FORT, M. K. 1. Essential and nonessential fized point. Amer. J. Math., 72 (1950), 315–322.MathSciNetzbMATHCrossRefGoogle Scholar
  8. GOWDA, M. S. and SZNAJDER, R. 1. Weak univalence and connectedness of inverse images of continuous functions. Preprint, Dept. of Math. Univ. of Maryland (1997).Google Scholar
  9. HA, C. D. 1. Applications of degree theory to stability of the complementarity problems. Math. Oper. Res. Vol. 12 (1987), 368–376.MathSciNetzbMATHCrossRefGoogle Scholar
  10. HERRERO, C. and VILLAR, A. 1. Assignaciones iqualitarias y eficientes en presencia de externalidades. Re. Espagnola Econ. 9 (1992), 115–127.Google Scholar
  11. HU, S. and PAPAGEORGIOU, N. S. 1. Handbook of Multivalued Analysis. Vol. I, Kluwer, Academic Publishers (1997).zbMATHGoogle Scholar
  12. HYERS, D. H., ISAC, G. and RASSIAS TH. M. 1. Stability of Functional Equations in Several Variables. Birkhäuser (1998).zbMATHCrossRefGoogle Scholar
  13. ISAC, G. 1. The fold complementarity problem and the order complementarity problem. Topological Methods in Nonlinear Analysis 8 (1996), 343–358.MathSciNetzbMATHGoogle Scholar
  14. ISAC, G., BULAVSKY, V. A. and KALASHNIKOV, V. V. 1. Exceptional family of elements, Leray-Schauder alternative and the solvability of implicit complementarity problems. Preprint-1999.Google Scholar
  15. ISAC, G. and RASSIAS, TH. M. 1. On the Hyers-Ulam stability of Ψ additive mappings. J. Approx. Theory 72 (1993), 131–137.MathSciNetzbMATHCrossRefGoogle Scholar
  16. ISAC, G. and Rassias, Th. M. 2. Stability of Ψ additive mappings: applications to non-linear analysis. Internat. J. Math. Math. Sci. 19 (1996), 219–228.MathSciNetzbMATHCrossRefGoogle Scholar
  17. ISAC, G. and YUAN, G. X. Z. 1. The essential components of coincident points for weakly inward and outward set-valued mappings. App., Math. Letters 12 (1999), 121–126.MathSciNetzbMATHCrossRefGoogle Scholar
  18. ISAC, G. and Yuan, G. X. Z. 2. Essential components and connectedness of solution set for complementarity problems. In: Progress in Optimization II, Fifth mini-conference-Optimization Days, Perth, Australia-June, 1998, 89–101.Google Scholar
  19. ISAC, G. and Yuan, G. X. Z. 3. Essential components and connectedness of solution set for complementarity problems. In: Recent Advance on Variational Inequalities (in press) (ed. Giannessi), Kluwer Academic Publishers.Google Scholar
  20. JONES, C. and GOWDA, M. S. 1. On the connectedness of solution set in linear complementarity problems. Preprint, Dept. of Math. Maryland University (1996).Google Scholar
  21. KRASNOSELSKII, M. A. and ZABREIKO, P. P. 1. Geometrical Methods of Nonlinear Analysis. Springer-Verlag (1984).CrossRefGoogle Scholar
  22. KINOSHITA, S. 1. On essential component of the set of fixed points. Osaka J. Math., 4 (1952), 19–22.MathSciNetzbMATHGoogle Scholar
  23. LLOYD, N. G. 1. Degree theory. Cambridge University Press, Cambridge (1978).zbMATHGoogle Scholar
  24. OPOITSEV, V. I. 1. A generalization of the theory of monotone and concave operators. Trans. Moscow Math. Soc. 2 (1979), 243–279.Google Scholar
  25. OPOITSEV, V. I. 2. Nonlinear Statical Systems. Economics-Mathematics Library, Nauka, Moskow (1986), (Russian).Google Scholar
  26. RAPCSAK, T. 1. On the connectedness of the solution set to linear complementarity systems. J. Optim. Theory Appl., 80 (1994), 501–512.MathSciNetzbMATHCrossRefGoogle Scholar
  27. VILLAR, A. 1. Operator Theorems with Applications to Distributive Problems and Equilibrium Models. Lecture Notes in Econom. and Math. Systems, Vol. 377, Springer-Verlag (1992).zbMATHCrossRefGoogle Scholar
  28. YUAN, G. X. Z. 1. Kkm Theory with Applications in Nonlinear Analysis. Marcel Dekker, Inc. (1999), Usa, New York.Google Scholar
  29. YUAN, G. X. Z., SMITH, B. and LOU, S. 1. Fixed point and coincidence theorems of set-valued mappings in topological vector spaces, with some applications. Nonlinear Anal. Theory Meth. Appl. 23 (1998), 183–199.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • George Isac
    • 1
  1. 1.Department of Mathematics and Computer ScienceRoyal Military College of CanadaKingstonCanada

Personalised recommendations