Linear vs. Nonlinear

  • Shankar Sastry
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 10)


Why do we need to have a nonlinear theory and why bother to study a qualitative nonlinear theory? After all, most models that are currently available are linear, and if a nonlinear model is to be used, computers are getting to be ever more powerful at simulating them. Do we really need a nonlinear theory? This is not a naive question, since linear models are so much more tractable than nonlinear ones and we can analyze quite sophisticated and high dimensional linear systems. Further, if one uses linear models with some possibly time-varying parameters, one may model real systems surprisingly well. Moreover, although nonlinear models may be conceptually more satisfying and elegant, they are of little use if one cannot learn anything from their behavior. Certainly, many practitioners in industry claim that they can do quite well with linear time varying models. Of course, an opposing argument is that we may use the ever increasing power of the computer to qualitatively understand the behavior of systems more completely and not have to approximate their behavior by linear systems.


Equilibrium Point Phase Portrait Periodic Point Closed Orbit Period Doubling Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Shankar Sastry
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations