Skip to main content

Abstract

Percutaneous transluminal angioplasty (PTA) and percutaneous transluminal coronary angioplasty (PTCA) are generally accepted and used as a minimal invasive therapeutic intervention for treatment of symptomatic stenoses of the central, peripheral, and coronary arteries. Clinical success and vessel patencies after PTCA are dependent on the pathology and type of lesion and the anatomic location.1–3 Several mechanisms are responsible for the success after PTA. Recoil, remodeling, and restenosis are factors responsible for reocclusions, but it is not known which factor is most influential. Recoil and remodeling might be prevented or reduced by the use of stents. Many attempts to prevent restenosis have failed.4–12 An important factor in restenosis is neointimal hyperplasia (NIH). As with other vascular interventions the vessel wall becomes traumatized after PTA. This trauma initiates a cascade of reactions in the vessel wall, the mechanism of which is not completely understood. In addition to smooth muscle cell proliferation with migration of cells from media across the internal elastic lamina and formation of an intimal mass of actively proliferating cells,13–18 there seems to be an important role for adventitial responses as well.19–27 Radiation therapy has been used successfully in several benign hyperproliferative diseases to prevent a proliferative response,28–34 so it was conjectured to be beneficial in reducing NIH as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunink MG, Donaldson MC, Meyerovitz MF et al: Risks and benefits of femoropopliteal percutaneous balloon angioplasty, J Vase Surg 17: 183–192, 1993.

    Article  CAS  Google Scholar 

  2. Johnston KW: Femoral and popliteal arteries: reanalysis of results of balloon angioplasty, Radiology 183: 767–771, 1992.

    PubMed  CAS  Google Scholar 

  3. Murray RRJ, Hewes RC, White RIJ et al: Longsegment femoropopliteal stenoses: is angioplasty a boon or a bust? Radiology 162: 473–476, 1987.

    PubMed  Google Scholar 

  4. Chesebro JH, Webster MWI, Reeder GS et al: Coronary angioplasty antiplatelet therapy induces acute complications but not restenosis [abstract], Circulation 80 (suppl 2): 64, 1989.

    Google Scholar 

  5. Corcos T, David PR, Val PG et al: Failure of dil-tiazem to prevent restenosis after PTCA, Am Heart J 109: 926–931, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Dehmer GJ, Popma JJ, Egerton K et al: Reduction in the rate of early restenosis after coronary angioplasty by a diet supplemented with w-3 fatty acids, N Engl J Med 319: 733–740, 1988.

    Article  PubMed  CAS  Google Scholar 

  7. Ellis SG, Roubin GS, Wilentz IJ et al: Effect of 18 to 24 hour heparin administered for prevention of restenosis after uncomplicated coronary angioplasty, Am Heart J 117: 777–782, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Raizner AE, Hollman J, Abukhalil J et al: Ciprostene for restenosis revisited: quantitative analysis of angiograms [abstract], J Am Coll Cardiol 21: 321A, 1993.

    Google Scholar 

  9. Reis GJ, Boucher TM, Slipperly ME et al: Randomized trial of fish oil for the prevention of restenosis after coronary angioplasty, Lancet 2: 177–181, 1989.

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz L, Bourassa MG, Lesperance J et al: Aspirin and dipyridamole in the prevention of restenosis after PTCA, N Engl J Med 318: 1714–1719, 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Thornton MA, Gruentzig AR, Hollman J et al: Coumadin and aspirin in the prevention of recurrence after transluminal coronary angioplasty: a randomized study, Circulation 69: 721–727, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Whitworth HB, Roubin GS, Hollman J et al: Effects of nifedipine on recurrent stenosis after PTCA, Am Coll Cardiol 8: 1271–1276, 1986.

    Article  CAS  Google Scholar 

  13. Clowes AW, Reidy MA, Clowes MM: Kinetics of cellular proliferation after arterial injury: smooth muscle growth in the absence of endothelium, Lab Invest 49: 327–333, 1983.

    PubMed  CAS  Google Scholar 

  14. Reidy MA, Fingerele J, Lindner V: Factors controlling the development of arterial lesion after injury, Circulation 86: 1143–1146, 1992.

    Google Scholar 

  15. Schwartz RS, Murphy JG, Edwards WD et al: Restenosis after balloon angioplasty: a practical proliferative model in porcine coronary arteries, Circulation 82: 2190–2200, 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Schwartz RS, Huber KC, Murphy JG et al: Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model, J Am Coll Cardiol 19: 267–274, 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Karas SP, Gravanis MB, Santoian EC et al: Coronary intimal proliferation after balloon injury and stenting in swine: an animal model of restenosis, J Am Coll Cardiol 20: 467–474, 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Schneider JE, Berk BC, Gravanis MB et al: Probucol decreases neointimal formation in a swine model of coronary artery balloon injury: a possible role for antioxidants in restenosis, Circulation 88: 628–637, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Scott NA, Ross C, Subramanian R et al: Characterization of the cellular response to coronary injury [abstract], Circulation 90: 1392, 1994.

    Article  Google Scholar 

  20. Scott NA, Martin F, Simonet L et al: Contribution of adventitial myofibroblasts to vascular remodelling and lesion formation after experimental angioplasty in pig coronary arteries [abstract], FASEB J 9: A845, 1995.

    Google Scholar 

  21. Wilcox JN, Waksman R, King SB: The role of the adventitia in the arterial response to angioplasty: the effect of intravascular radiation, Int J Radiat Oncol Biol Phys 36: 789–796, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Scott NA, Cipolla GD, Ross CE et al: Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries, Circulation 93: 2178–2187, 1996.

    Article  PubMed  CAS  Google Scholar 

  23. Booth RF, Martin JF, Honey AC et al: Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation, Atherosclerosis 76: 257–268, 1989.

    Article  PubMed  CAS  Google Scholar 

  24. Barker SG, Tilling LC, Miller GC et al: The adventitia and atherogenesis: removal initiates intimal proliferation in the rabbit which regresses on generation of a “neoadventitia,” Atherosclerosis 105: 131–144, 1994.

    Article  PubMed  CAS  Google Scholar 

  25. Chignier E, Eloy R, Hue A et al: Adventitial resection of small artery provokes endothelial loss and intimal hyperplasia, Surg Gynecol Obstet 163: 327–334, 1986.

    PubMed  CAS  Google Scholar 

  26. Marmur JD, Rossikhina M, Guha A et al: Tissue factor is rapidly induced in arterial smooth muscle after balloon injury, J Clin Invest 91: 2253–2259, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Rakugi H, Jacob HJ, Krieger JE et al: Vascular injury induces angiotensinogen gene expression in the media and neointima, Circulation 87: 283–290, 1993.

    Article  PubMed  CAS  Google Scholar 

  28. Van den Brenk HA, Minty CC: Radiation in the management of keloids and hypertrofic scar, Br J Surg 47: 595–605, 1961.

    Article  Google Scholar 

  29. Van den Brenk HA: Results of profylactic postoperative irradiation in 1300 cases of pterygium, AJR 103: 723, 1968.

    Google Scholar 

  30. Finger PT, Berson A, Sherr D et al: Radiation therapy for subretinal neovascularization, Ophthalmology 103: 878–889, 1996.

    PubMed  CAS  Google Scholar 

  31. Grillo HC, Potsaid MS: Studies in wound healing, Ann of Surg 154: 741–750, 1961.

    CAS  Google Scholar 

  32. Inalsingh CHA: An experience in treating five hundred and one patients with keloids, Johns Hopkins Med J 134: 284–290, 1974.

    PubMed  CAS  Google Scholar 

  33. MacLennan I, Keys HM, Evarts CM et al: Usefulness of postoperative hip irradiation in the prevention of heterotopic bone formation in a high risk group of patients, Int J Radiat Oncol Biol Phys 10: 49–53, 1984.

    Article  PubMed  CAS  Google Scholar 

  34. Nickson JJ, Lawrence W, Rachwalsky L: Roentgen rays and wound healing: fractionated irradiation: experimental study, Surgery 34: 859–862, 1953.

    PubMed  CAS  Google Scholar 

  35. Levendag PC, Schmitz PI, Jansen PP et al: Fractionated high dose rate and pulsed dose rate brachytherapy-first clinical experience in squamous cell carcinoma of the tonsillar fossa and soft palate, Int J Radiat Oncol Biol Phys 38: 497–506, 1997.

    Article  PubMed  CAS  Google Scholar 

  36. Shimotakahara S, Mayberg MR: Gamma irradiation inhibits neointimal hyperplasia in rats after arterial injury, Stroke 25: 424–428, 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Mayberg MR, Luo Z, London S et al: Radiation inhibition of intimal hyperplasia after arterial injury, Radiat Res 142: 212–220, 1995.

    Article  PubMed  CAS  Google Scholar 

  38. Schwartz RS, Koval TM, Edwards WD et al: Effect of external beam irradiation on neointimal hyperplasia after experimental coronary artery injury, J Am Coll Cardiol 19: 1106–1113, 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Waksman R, Robinson KA, Crocker IR et al: Endovascualr low-dose irradiation inhibits neointima formation after coronary artery balloon injury in swine: a possible role for radiation therapy in restenosis prevention, Circulation 91: 1533–1539, 1995.

    Article  PubMed  CAS  Google Scholar 

  40. Waksman R, Robinson KA, Crocker IR et al: Intracoronary radiation before stent implan-taion inhibits neointima formation in stented porcine coronary arteries, Circulation 92: 1383–1386, 1995.

    Article  PubMed  CAS  Google Scholar 

  41. Waksman R, Robinson KA, Crocker IR et al: Intracoronary low-dose beta-irradiation inhibits neointima formation after coronary artery balloon injury in the swine restenosis model, Circulation 92: 3025–3031, 1995

    Article  PubMed  CAS  Google Scholar 

  42. Wiedemann JG, Leavy JA, Amols H et al: Effects of high-dose intracoronary irradiation on vasomotor function and smooth muscle histopathology, Am J Physiol 267:H 125–132, 1994.

    Google Scholar 

  43. Wiedermann JG, Marboe C, Amols H et al: Intracoronary irradiation markedly reduces restenosis after balloon angioplasty in a porcine model, J Am Coll Cardiol 23: 1491–1498, 1994.

    Article  PubMed  CAS  Google Scholar 

  44. Wiedermann JG, Marboe C, Amols H et al: Intracoronary irradiation markedly reduces neointimal proliferation after balloon angioplasty in swine: persistent benefit at 6-month follow-up, J Am Coll Cardiol 25: 1451–1456, 1995.

    Article  PubMed  CAS  Google Scholar 

  45. Mazur W, Ali MN, Dabhagi SF et al: High dose rate intracoronary radiation suppresses neointimal proliferation in the stented and balloon model of porcine restenosis [abstract], Circulation 90: 652, 1994.

    Google Scholar 

  46. Verin V, Popowski Y, Urban P et al: Intraarterial beta irradiation prevents neointimal hyperplasia in a hypercholoesterolemic rabbit restenosis model, Circulation 92:2284–2290, 1995.

    Article  PubMed  CAS  Google Scholar 

  47. Böttcher HD: Endovascular radioprevention of intimai hyperplasia after percutaneous transluminal angioplasty of peripheral blood vessels, Radiologe 34: 519–524, 1994.

    PubMed  Google Scholar 

  48. Böttcher HD, Schopohl B, Liermann D et al: Endovascular irradiation—a new method to avoid recurrent stenosis after stent implantation in peripheral arteries: technique and preliminary results, Int J Radiat Oncol Biol Phys 29: 183–186, 1994.

    Article  PubMed  Google Scholar 

  49. Liermann D, Berkefeld J, Herrmann G et al: Intervention and clinical aspects combined with endovascular irradiation of intimai hyperplasia of the vascular system, Radiologe 34: 524–533, 1994.

    PubMed  CAS  Google Scholar 

  50. Liermann D, Böttcher HD: Use of low dose local radiation for treatment of restenosis Presented at the Sixth annnual international symposium on vascular diagnosis and intervention, January 1994, pp 69–71.

    Google Scholar 

  51. Liermann D, Böttcher HD, Kollath J et al: Prophylactic endovascular radiotherapy to prevent intimal hyperplasia after stent implantation in femoropopliteal arteries, Cardiovasc Intervent Radiol 17: 12–16, 1994.

    Article  PubMed  CAS  Google Scholar 

  52. Fischell TA, Bassam KK, Fischeil DR et al: Low-dose beta particle emission from “stent” wire results in complete, localized inhibition of smooth muscle cell proliferation, Circulation 90: 2956–2963, 1994.

    Article  PubMed  CAS  Google Scholar 

  53. Hehrlein C, Zimmermann M, Metz J et al: Radioactive stent implantation inhibits neointimal proliferation in non-atherosclerotic rabbits, Circulation 88 (suppl I): 65, 1993.

    Google Scholar 

  54. Hehrlein C, Gollan C, Dönges K et al: Low-dose radioactive endovascular tents prevent smooth muscle cell proliferation and neointimal hyperplasia in rabbits, Circulation 92: 1570–1575, 1995.

    Article  PubMed  CAS  Google Scholar 

  55. Hehrlein C, Stintz M, Kinscherf R et al: Pure beta-particle emitting stents inhibit neointima formation in rabbits, Circulation 93:641–645, 1996

    Article  PubMed  CAS  Google Scholar 

  56. Laird JR, Carter AJ, Kufs WM et al: Inhibition of neointimal proliferation with low-dose irradiation from a beta-particle-emitting stent, Circulation 93: 529–536, 1996.

    Article  PubMed  CAS  Google Scholar 

  57. Popowski Y, Verin V, Papirov I et al: Intraarterial 90-yttrium brachytherapy: preliminary dosimetric study using a specially modified angioplasty balloon, Int J Radiat Oncol Biol Phys 33: 713–717, 1995.

    Article  PubMed  CAS  Google Scholar 

  58. Popowski Y, Verin V, Urban P: Endovascular beta-irradiation following percutaneous transluminal coronary balloon angioplasty, Int J Radiat Oncol Biol Phys 36: 841–845, 1996.

    Article  PubMed  CAS  Google Scholar 

  59. Teirstein PS, Massullo V, Jani S et al: Catheter-based radiotherapy to inhibit restenosis after coronary stenting, N Engl J Med 336:1697–1703, 1997

    Article  PubMed  CAS  Google Scholar 

  60. Massullo V, Teirstein PS, Jani S et al: Endovascular brachytherapy to inhibit coronary artery restenosis: an introduction to the SCRIPPS Coronary Radiation to Inhibit Proliferation Post Stenting trial, Int J Radiat Oncol Biol Phys 36: 973–975, 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nolthenius, R.R.T., Moll, F.L. (1999). Endoluminal Radiation Therapy. In: White, R.A., Fogarty, T.J. (eds) Peripheral Endovascular Interventions. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3105-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3105-7_38

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3107-1

  • Online ISBN: 978-1-4757-3105-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics