Prevention of Lesion Recurrence in Endovascular Devices

  • Ted R. Kohler
  • Alexander W. Clowes


Synthetic prosthetic grafts developed over the last 40 years have permitted vascular surgeons to undertake reconstructions of extensively diseased vessels in situations where other forms of repair were not likely to work. The structure and function of these grafts differ from that of normal native vessels in that they lack an endothelial covering at the luminal surface and are prone to sudden thrombosis; they are rigid and do not possess vasomotor activity; and they induce a wound healing response that under some circumstances causes luminal narrowing and reduction in blood flow. In general, these deficiencies are not of major concern if the graft is used to replace a large vessel in a high flow system, but they do become limiting when the graft is used to replace a vessel of small diameter with relatively low blood flow.


Smooth Muscle Cell Intimal Hyperplasia Arterial Injury Smooth Muscle Cell Proliferation Lesion Recurrence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clowes AW, Reidy MA, Clowes MM: Mechanisms of stenosis after arterial injury, Lab Invest 49: 208–215, 1983.PubMedGoogle Scholar
  2. 2.
    Wilcox JN, Waksman R, King SB, Scott NA: The role of the adventitia in the arterial response to angioplasty: the effect of intravascular radiation, Int J Radiat Oncol Biol Phys 36: 789–796, 1996.PubMedCrossRefGoogle Scholar
  3. 3.
    Zalewski A, Shi Y: Vascular myofibroblasts: lessons from coronary repair and remodeling, Arterioscler Thromb Vase Biol 17: 417–422, 1997.CrossRefGoogle Scholar
  4. 4.
    Majesky MW, Schwartz SM, Clowes MM, Clowes AW: Heparin regulates smooth muscle S phase entry in the injured rat carotid artery, Circ Res 61: 296–300, 1987.PubMedCrossRefGoogle Scholar
  5. 5.
    Clowes AW, Reidy MA, Clowes MM: Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium, Lab Invest 49: 327–333, 1983.PubMedGoogle Scholar
  6. 6.
    Clowes AW, Clowes MM, Reidy MA: Kinetics of cellular proliferation after arterial injury. III. Endothelial and smooth muscle growth in chronically denuded vessels, Lab Invest 54: 295–303, 1986.PubMedGoogle Scholar
  7. 7.
    Clowes AW, Kirkman TR, Reidy MA: Mechanisms of arterial graft healing. III. Rapid transmural capillary ingrowth provides a source of intimal endothelium and smooth muscle in porous PTFE prostheses, Am J Pathol 123: 220–230, 1986.PubMedGoogle Scholar
  8. 8.
    Shi Q, Wu HD, Hayashida N et al: Proof of fallout endothelialization of impervious Dacron grafts in the aorta and inferior vena cava of the dog, J Vase Surg 20: 546–557, 1994.CrossRefGoogle Scholar
  9. 9.
    Kouchi Y, Onuki Y, Wu MH et al: Apparent blood stream origin of endothelial and smooth muscle cells in the neointima of long, impervious carotid-femoral grafts in the dog, Ann Vase Surg 12: 46–54, 1998.CrossRefGoogle Scholar
  10. 10.
    Shi Q, Wu MH, Hayashida N et al: Proof of fallout endothelialization of impervious Dacron grafts in the aorta and inferior vena cava of the dog, J Vase Surg 20: 546–556, 1994.CrossRefGoogle Scholar
  11. 11.
    Glagov S, Weisenberg E, Zarins CK, Stanku-navicius R: Compensatory enlargement of human atherosclerotic coronary arteries, N Engl J Med 316: 1371–1375, 1987.PubMedCrossRefGoogle Scholar
  12. 12.
    Mondy JS, Williams JK, Adams MR et al: Structural determinants of lumen narrowing after angioplasty in atherosclerotic nonhuman primates, J Vase Surg 26: 875–883, 1997.CrossRefGoogle Scholar
  13. 13.
    Lindner V, Lappi DA, Baird A et al: Role of basic fibroblast growth factor in vascular lesion formation, Circ Res 68: 106–113, 1991.PubMedCrossRefGoogle Scholar
  14. 14.
    Lindner V, Reidy MA: Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor, Proc Natl Acad Sci USA 88: 3739–3743, 1991.PubMedCrossRefGoogle Scholar
  15. 15.
    Fingerle J, Johnson R, Clowes AW et al: Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery, Proc Natl Acad Sci USA 86: 8412–8416, 1989.PubMedCrossRefGoogle Scholar
  16. 16.
    Jawien A, Bowen-Pope DF, Lindner V et al: Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty, J Clin Invest 89: 507–511, 1992.PubMedCrossRefGoogle Scholar
  17. 17.
    O’Brien ER, Alpers CE, Stewart DK et al: Proliferation in primary and restenotic coronary atherectomy tissue: implications for antiproliferative therapy, Circ Res 73: 223–231, 1993.PubMedCrossRefGoogle Scholar
  18. 18.
    O’Brien ER, Garvin MR, Dev R et al: Angio-genesis in human coronary atherosclerotic plaques, Am J Pathol 145: 883–894, 1994.PubMedGoogle Scholar
  19. 19.
    Geary RL, Williams JK, Golden D et al: Time course of cellular proliferation, intimal hyperplasia, and remodeling following angioplasty in monkeys with established atherosclerosis: a nonhuman primate model of restenosis, Arte-rioscler Thromb Vase Biol 16: 34–43, 1996.CrossRefGoogle Scholar
  20. 20.
    Schwartz RS, Murphy JG, Edwards WD et al: Restenosis after balloon angioplasty: a practical proliferative model in porcine coronary arteries, Circulation 82: 2190–2200, 1990.PubMedCrossRefGoogle Scholar
  21. 21.
    Marin ML, Veith FJ, Cynamon J et al: Effect of polytetrafluoroethylene covering of Palmaz stents on the development of intimal hyperplasia in human iliac arteries, J Vase Interv Radiol 7: 651–656, 1996.CrossRefGoogle Scholar
  22. 22.
    Dolmatch BL, Tio FO, Li XD, Dong YH: Patency and tissue response related to two types of polytetrafluoroethylene-covered stents in the dog, J Vase Interv Radiol 7: 641–649, 1996.CrossRefGoogle Scholar
  23. 23.
    Greisler HP, Schwarcz TH, Ellinger J, Kim DU: Dacron inhibition of arterial regenerative activities, I Vase Surg 3: 747–756, 1986.Google Scholar
  24. 24.
    Golden MA, Hanson SR, Kirkman TR et al: Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity,/ Vase Surg 11: 838–845, 1990.Google Scholar
  25. 25.
    Kohler TR, Stratton JR, Kirkman TR et al: Conventional versus high-porosity polytetrafluoroethylene grafts: clinical evaluation, Surgery 112: 901–907, 1992.PubMedGoogle Scholar
  26. 26.
    Durante KR, Wu HD, Sauvage LR et al: Implant site: a determinant of completeness of arterial prosthesis healing in the dog and possibly in humans, Ann Vase Surg 4: 171–178, 1990.CrossRefGoogle Scholar
  27. 27.
    Bull DA, Hunter GC, Holubec H et al: Cellular origin and rate of endothelial cell coverage of PTFE grafts,/Surg Res 58: 58–68, 1995.Google Scholar
  28. 28.
    Sterpetti AV, Hunter WJ, Schultz RD, Farina C: Healing of high-porosity polytetrafluoroethylene arterial grafts is influenced by the nature of the surrounding tissue, Surgery 111: 677–682, 1992.PubMedGoogle Scholar
  29. 29.
    Graham LM, Harreil KA, Sell RL et al: Enhanced endothelialization of Dacron grafts by external vein wrapping, J Surg Res 38: 537–545, 1985.PubMedCrossRefGoogle Scholar
  30. 30.
    Ombrellaro MP, Stevens SL, Sciarrotta J et al: Effect of intra-arterial environment on endothelialization and basement membrane organization in polytetrafluoroethylene grafts, Am J Surg 174: 29–32, 1997.PubMedCrossRefGoogle Scholar
  31. 31.
    Ombrellaro MP, Stevens SL, Kerstetter K et al: Healing characteristics of intraarterial stented grafts: effect of intraluminal position on prosthetic graft healing, Surgery 120: 60–70, 1996.PubMedCrossRefGoogle Scholar
  32. 32.
    Ombrellaro MP, Stevens SL, Sciarrotta J et al: Effect of balloon-expandable and self-expanding stent fixation on endoluminal polytetrafluoroethylene graft healing, Am J Surg 173: 461–466, 1997.PubMedCrossRefGoogle Scholar
  33. 33.
    Weatherford DA, Ombrellaro MP, Schaeffer DO et al: Healing characteristics of intraarterial stent grafts in an injured artery model, Ann Vase Surg 11: 54–61, 1997.CrossRefGoogle Scholar
  34. 34.
    Ohki T, Marin ML, Veith FJ et al: Anastomotic intimal hyperplasia: a comparison between conventional and endovascular stent graft techniques,/Surg Res 69: 255–267, 1997.Google Scholar
  35. 35.
    Harris EJJ, Harris EJ, Berry GJ, Mitchell RS: Endoluminal aortic grafting: a preliminary animal study of graft-healing, J Surg Res 61: 404–412, 1996.PubMedCrossRefGoogle Scholar
  36. 36.
    White JG, Mulligan NJ, Gorin DR et al: Response of normal aorta to endovascular grafting: a serial histopathological study, Arch Surg 133: 246–249, 1998.PubMedCrossRefGoogle Scholar
  37. 37.
    Eton D, Warner DL, Owens C et al: Histological response to stent graft therapy, Circulation 94 (suppl II): 182–187, 1996.CrossRefGoogle Scholar
  38. 38.
    Marin ML, Veith FJ, Cynamon J et al: Human transluminal^ placed endovascular stented grafts: preliminary histopathologic analysis of healing grafts in aortoiliac and femoral artery occlusive disease,/Vase Surg 21: 595–603, 1995.Google Scholar
  39. 39.
    McGahan TJ, Berry GA, McGahan SL et al: Results of autopsy 7 months after successful endoluminal treatment of an infrarenal abdominal aortic aneurysm, J Endovasc Surg 2: 348–355, 1995.PubMedCrossRefGoogle Scholar
  40. 40.
    Hill-West JL, Chowdhury SM, Slepian MJ, Hubbell JA: Inhibition of thrombosis and intimal thickening by in situ photopolymeriza-tion of thin hydrogel barriers, Proc Nad Acad Sci USA 91: 5967–5971, 1994.CrossRefGoogle Scholar
  41. 41.
    Rogers C, Karnovsky MJ, Edelman ER: Inhibition of experimental neointimal hyperplasia and thrombosis depends on the type of vascular injury and the site of drug administration, Circulation 88: 1215–1221, 1993.PubMedCrossRefGoogle Scholar
  42. 42.
    Karas SP, Gravanis MB, Santoian EC et al: Coronary intimal proliferation after balloon injury and stenting in swine: an animal model of restenosis, J Am Coll Cardiol 20:467–474Google Scholar
  43. 43.
    Schwartz RS, Edwards WD, Huber KC et al: Coronary restenosis: prospects for solution and new perspectives from a porcine model [see comments], Mayo Clin Proc 68:54–62Google Scholar
  44. 44.
    Schwartz RS, Huber KC, Murphy JG et al: Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model, J Am Coll Cardiol 19: 267–274, 1992.PubMedCrossRefGoogle Scholar
  45. 45.
    Strauss BH, Serruys PW, de Scheerder IK et al: Relative risk analysis of angiographic predictors of restenosis within the coronary Wallstent, Circulation 84: 1636–1643, 1991.PubMedCrossRefGoogle Scholar
  46. 46.
    Langille BL, O’Donnell F: Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent, Science 231: 405–407, 1986.PubMedCrossRefGoogle Scholar
  47. 47.
    Kohler TR, Kirkman TR, Kraiss LW et al: Increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts, Circ Res 69: 1557–1565, 1991.PubMedCrossRefGoogle Scholar
  48. 48.
    Berguer R, Higgins RF, Reddy DJ: Intimal hyperplasia, Arch Surg 115: 332–335, 1980.PubMedCrossRefGoogle Scholar
  49. 49.
    Rittgers SE, Karayannacos PE, Guy JF: Velocity distribution and intimal proliferation in autologous vein grafts in dogs, Circ Res 42: 792–801, 1978.PubMedCrossRefGoogle Scholar
  50. 50.
    Morinaga K, Okadome K, Kuroki M et al: Effect of wall shear stress on intimal thickening of arterially transplanted autogenous veins in dogs, J Vase Surg 2: 430–433, 1985.Google Scholar
  51. 51.
    Mii S, Okadome K, Onohara T et al: Intimal thickening and permeability of arterial autogenous vein graft in a canine poor-runoff model: transmission electron microscopic evidence, Surgery 108: 81–89, 1990.PubMedGoogle Scholar
  52. 52.
    Kohler TR, Jawien A: Flow affects development of intimal hyperplasia following arterial injury in rats, Arterioscler Thromb 12: 963–971, 1992.PubMedCrossRefGoogle Scholar
  53. 53.
    Kamiya A, Togawa T: Adaptive regulation of wall shear stress to flow change in the canine carotid artery, Am J Physiol 239: 14–21, 1980.Google Scholar
  54. 54.
    Zarins CK, Zatina MA, Giddens DP et al: Shear stress regulation of artery lumen diameter in experimental atherogenesis, J Vase Surg 5: 413–420, 1987.Google Scholar
  55. 55.
    Kohler TR, Jawien A: Flow affects development of intimal hyperplasia following arterial injury in rats,Atheroscler Thromb 12: 963–971, 1992.Google Scholar
  56. 56.
    Glagov S, Weisenberg G, Kolletis R, Stanku-navicius R: Compensatory enlargement of human atherosclerotic coronary arteries prevents narrowing of the lumen, FASEB J 45: 583, 1986.Google Scholar
  57. 57.
    Zarins CK, Weisenberg E, Kolettis G, Stankunavicius R: Differential enlargement of artery segments in response to enlarging atherosclerotic plaques, J Vase Surg 7: 386–394, 1988.Google Scholar
  58. 58.
    Mattsson EJ, Kohler TR, Vergel SM, Clowes AW: Increased blood flow induces regression of intimal hyperplasia, Arterioscler Thromb Vase Biol 17: 2245–2249, 1997.CrossRefGoogle Scholar
  59. 59.
    Herrman JP, Hermans WR, Vos J, Serruys PW: Pharmacological approaches to the prevention of restenosis following angioplasty: the search for the Holy Grail? (Part II), Drugs 46: 249–262, 1993.PubMedCrossRefGoogle Scholar
  60. 60.
    Herrman JP, Hermans WR, Vos J, Serruys PW: Pharmacological approaches to the prevention of restenosis following angioplasty: the search for the Holy Grail? (Part I), Drugs 46: 18–52, 1993.PubMedCrossRefGoogle Scholar
  61. 61.
    Breckwoldt WL, Belkin M, Gould K et al: Modification of the thrombogenicity of a self-expanding vascular stent, J Invest Surg 4: 269–278, 1991.PubMedCrossRefGoogle Scholar
  62. 62.
    Goldman S, Copeland J, Moritz T et al: Saphenous vein graft patency 1 year after coronary artery bypass surgery and effects of antiplatelet therapy: results of a Veterans Administration Cooperative Study, Circulation 80: 1190–1197, 1989.PubMedCrossRefGoogle Scholar
  63. 63.
    Schomig A, Neumann FJ, Kastrati A et al: A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents [see comments], N Engl J Med 334: 1084–1089, 1996.PubMedCrossRefGoogle Scholar
  64. 64.
    Anonymous: Use of a monoclonal antibody directed against the platelet glycoprotein Ilb/IIIa receptor in high-risk coronary angio-plasty: the EPIC investigation, N Engl J Med 330: 956–961, 1994.CrossRefGoogle Scholar
  65. 65.
    Coller BS, Anderson K, Weisman HF: New antiplatelet agents: platelet GPIIb/IIIa antagonists, Thromb Haemost 74: 302–308, 1995.PubMedGoogle Scholar
  66. 66.
    Topol EJ, Ferguson JJ, Weisman HF et al: Long-term protection from myocardial ischemic events in a randomized trial of brief integrin beta3 blockade with percutaneous coronary intervention: EPIC investigator group: evaluation of platelet Ilb/IIIa inhibition for prevention of ischemic complication [see comments], JAMA 278: 479–484, 1997.PubMedCrossRefGoogle Scholar
  67. 67.
    Kohler TR, Kirkman TR, Clowes AW: Effect of heparin on adaptation of vein grafts to arterial circulation, Arteriosclerosis 9: 523–528, 1989.PubMedCrossRefGoogle Scholar
  68. 68.
    Kenagy RD, Nikkari ST, Welgus HG, Clowes AW: Heparin inhibits the induction of three matrix metalloproteinases (stromelysin, 92-kD gelatinase, and collagenase) in primate arterial smooth muscle cells,/ Clin Invest 93: 1987–1993, 1994.CrossRefGoogle Scholar
  69. 69.
    Klein LW: Restenosis after successful percutaneous transluminal coronary angioplasty, Prog Cardiovasc Dis 32: 365–382, 1990.PubMedCrossRefGoogle Scholar
  70. 70.
    Buchwald AB, Unterberg C, Nebendahl K et al: Low-molecular-weight heparin reduces neo-intimal proliferation after coronary stent implantation in hypercholesterolemic minipigs, Circulation 86: 531–537, 1992.PubMedCrossRefGoogle Scholar
  71. 71.
    Edmondson RA, Cohen AT, Das SK et al: Low-molecular weight heparin versus aspirin and dipyridamole after femoropopliteal bypass grafting, Lancet 344: 914–917, 1994.PubMedCrossRefGoogle Scholar
  72. 72.
    Faxon DP, Minor S, Cot’e G et al: Low molecular weight heparin in prevention of restenosis after angioplasty: results of enoxaparin restenosis (ERA) trial, Circulation 90: 908–914, 1994.PubMedCrossRefGoogle Scholar
  73. 73.
    Chesebro JH, Webster MW, Zoldhelyi P et al: Antithrombotic therapy and progression of coronary artery disease: antiplatelet versus antithrombins, Circulation 86 (suppl III): 100–110, 1992.CrossRefGoogle Scholar
  74. 74.
    Pipili E, Manolopoulos VG, Catravas JD, Maragoudakis ME: Angiotensin converting enzyme activity is present in the endothelium-denuded aorta, Br J Pharmacol 98: 333–335, 1989.PubMedCrossRefGoogle Scholar
  75. 75.
    Powell JS, Clozel JP, Muler RKM et al: Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury, Science 245: 186–188, 1989.PubMedCrossRefGoogle Scholar
  76. 76.
    Hanson SR, Powell JS, Dodson T et al: Effects of angiotensin converting enzyme inhibition with cilazapril on intimai hyperplasia in injured arteries and vascular grafts in the baboon, Hypertension 18 (suppl II): 70–76, 1991.CrossRefGoogle Scholar
  77. 77.
    Rakugi H, Wang DS, Dzau VJ, Pratt RE: Potential importance of tissue angiotensin-converting enzyme inhibition in preventing neointima formation, Circulation 90: 449–455, 1994.PubMedCrossRefGoogle Scholar
  78. 78.
    Cook NS, Zerwes HG, Pally C et al: Decreased lumen size after balloon injury despite inhibition of neointimal thickening and antiva-sospastic treatment, Cardiovasc Res 28: 215–220, 1994.PubMedCrossRefGoogle Scholar
  79. 79.
    Jackson CL, Bush RC, Bowyer DE: Mechanism of antiatherogenic action of calcium antagonists, Atherosclerosis 80: 17–26, 1989.PubMedCrossRefGoogle Scholar
  80. 80.
    Jackson CL, Bush RC, Bowyer DE: Inhibitory effect of calcium antagonists on balloon catheter-induced arterial smooth muscle cell proliferation and lesion size, Atherosclerosis 69: 115–122, 1988.PubMedCrossRefGoogle Scholar
  81. 81.
    Lichtlen PR, Hugenholtz PG, Rafflenbeul W et al: Nifedipine trial, Lancet 335: 1109–1113, 1990.PubMedCrossRefGoogle Scholar
  82. 82.
    El-Sanadiki MN, Cross KS, Murray JJ et al: Reduction of intimai hyperplasia and enhanced reactivity of experimental vein bypass grafts with verapamil treatment, Ann Surg 212: 87–96, 1990.PubMedCrossRefGoogle Scholar
  83. 83.
    Ferns GAA, Raines EW, Sprugel KH et al: Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF, Science 253: 1129–1132, 1991.PubMedCrossRefGoogle Scholar
  84. 84.
    Maresta A, Balducelli M, Cantini L et al: Trapidil (triazolopyrimidine), a platelet derived growth factor antagonist, reduces restenosis after percutaneous transluminal coronary angioplasty, Circulation 90: 2710–2715, 1994.PubMedCrossRefGoogle Scholar
  85. 85.
    Chervu A, Moore WS, Quinones-Baldrich WJ, Henderson T: Efficacy of corticosteroids in suppression of intimai hyperplasia,/Vase Surg 10: 129–134, 1989.Google Scholar
  86. 86.
    Villa AE, Guzman LA, Chen W et al: Local delivery of dexamethasone for prevention of neointimal proliferation in a rat model of balloon angioplasty,/Clin Invest 93: 1243–1249, 1994.Google Scholar
  87. 87.
    Pepine CJ, Hirshfeld JW, Macdonald RG et al: A controlled trial of corticosteroids to prevent restenosis after coronary angioplasty: M-HEART group, Circulation 81: 1753–1761, 1990.PubMedCrossRefGoogle Scholar
  88. 88.
    Azuma H, Funayama N, Kubota T, Ishikawa M: Regeneration of endothelial cells after balloon denudation of the rabbit carotid artery and changes in responsiveness, Jpn J Pharmacol 52: 541–552, 19–90.Google Scholar
  89. 89.
    Wilson JM, Birinyi LK, Salomon RN et al: Implantation of vascular grafts lined with genetically modified endothelial cells, Science 244: 1344–1346, 1989.PubMedCrossRefGoogle Scholar
  90. 90.
    Nabel EG, Plautz G, Nabel GJ: Gene transfer into vascular cells, J Am Coll Cardiol 17: 189B - 194B, 1991.PubMedCrossRefGoogle Scholar
  91. 91.
    Nabel EG, Plautz B, Boyce FM et al: Recombinant gene expression in vivo within endothelial cells of the arterial wall, Science 244: 1342–1344, 1989.PubMedCrossRefGoogle Scholar
  92. 92.
    Shi Y, Fard A, Galeo A et al: Transcatheter delivery of c-myc antisense oligomers reduces neointimal formation in a porcine model of coronary artery balloon injury, Circulation 90: 944–951, 1994.PubMedCrossRefGoogle Scholar
  93. 93.
    Simons M, Rosenberg RD: Antisense nominisele myosin heavy chain and c-myb oligonucleotides suppress smooth muscle cell proliferation in vitro, Circ Res 70: 837–843, 1992.CrossRefGoogle Scholar
  94. 94.
    Simons M, Edelman ER, DeKeyser JL et al: Antisense c-myb oligonucleotides inhibit intimai arterial smooth muscle cell accumulation in vivo, Nature 359: 67–70, 1992.PubMedCrossRefGoogle Scholar
  95. 95.
    Dichek DA, Neville RF, Zwiebel JA et al: Seeding of intravascular stents with genetically engineered endothelial cells, Circulation 80: 1347–1353, 1989.PubMedCrossRefGoogle Scholar
  96. 96.
    Flugelman MY, Virmani R, Leon MB et al: Genetically engineered endothelial cells remain adherent and viable after stent deployment and exposure to flow in vitro, Circ Res 70: 348–354, 1992.PubMedCrossRefGoogle Scholar
  97. 97.
    Lynch CM, Clowes MM, Osborne WRA et al: Long-term expression of human adenosine deaminase in vascular smooth muscle cells of rats: a model for gene therapy, Proc Natl Acad Sci USA 89: 1138–1142, 1992.PubMedCrossRefGoogle Scholar
  98. 98.
    Osborne WR, Ramesh N, Lau S et al: Gene therapy for long-term expression of erythropoietin in rats, Proc Nat Acad Sci USA 92: 8055–8058, 1995.PubMedCrossRefGoogle Scholar
  99. 99.
    Ohno T, Gordon D, San H et al: Gene therapy for vascular smooth muscle cell proliferation after arterial injury [see comments], Science 265: 781–784, 1994.PubMedCrossRefGoogle Scholar
  100. 100.
    Wiedemann JG, Marboe C, Amols H et al: Intracoronary irradiation markedly reduces neointimal proliferation after balloon angioplasty in swine: persistent benefit at 6-month follow-up, J Am Coll Cardiol 25: 1451–1456, 1995.CrossRefGoogle Scholar
  101. 101.
    Teirstein PS, Massullo V, Jani S et al: Catheter-based radiotherapy to inhibit restenosis after coronary stenting [see comments], N Engl J Med 336: 1697–1703, 1997.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Ted R. Kohler
  • Alexander W. Clowes

There are no affiliations available

Personalised recommendations