Skip to main content

Biomaterials: Considerations for Endovascular Devices

  • Chapter
Peripheral Endovascular Interventions

Abstract

Rapidly evolving catheter-based technology has stimulated increasing application of endovascular therapy for the treatment of atherosclerotic coronary arteries and more recently peripheral vascular disease. Research and development advances have affected metal, textile, and polymer biomaterials and have facilitated refinements in design and construction of endovascular devices. As a result, the performance of these devices has improved, complications have been reduced, and the uses of minimally invasive applications have expanded. This chapter reviews the biomaterial properties and design characteristics of existing guidewires, angioplasty balloons and catheters, and metallic intravascular stents and filters with reference to their implementation and function. Design and biomaterial considerations for newly developed endoluminal grafts and their applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schroder J: The mechanical properties of guidewires. Part I. Stiffness and torsional strength, Cardiovasc Intervent Radiol 16: 43–46, 1993.

    Article  PubMed  CAS  Google Scholar 

  2. Schroder J: The mechanical properties of guidewires. Part II. Kinking resistance, Cardiovasc Intervent Radiol 16: 47–48, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Schroder J: The mechanical properties of guidewires. Part III. Sliding friction, Cardiovasc Intervent Radiol 16: 93–97, 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Gruntzig A, Hopff H: Percutane Rekanalisation chronischer arterieller Verschlusse mit einem neuen Dilatationskatheter: Modification der Dotter-Technik, Dtsch Med Wochenschr 99: 2502–2505, 1974.

    Article  PubMed  CAS  Google Scholar 

  5. Castaneda-Zuniga WR, Formanek A, Tadaverthy M et al: The mechanism of balloon angioplasty, Radiology 135: 565–571, 1980.

    PubMed  CAS  Google Scholar 

  6. Chin AK, Kinney TB, Rurik GW et al: A physical measurement of the mechanisms of transluminal angioplasty, Surgery 95: 196–200, 1983.

    Google Scholar 

  7. Waller BF: The eccentric coronary atherosclerotic plaque: morphologic observations and clinical relevance, Clin Cardiol 12: 14–20, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Abele JE: Balloon catheters and transluminal dilatation: technical considerations, Am J Radiol 135: 901–906, 1980.

    CAS  Google Scholar 

  9. Abele JE: Balloon catheter technology. In: Castaneda-Zuniga WR, Tadavarthy SM, editors: Interventional radiology, Baltimore, 1992, Williams & Wilkins, pp 345–350.

    Google Scholar 

  10. Matsumoto AH, Barth KH, Selby JB, Tegtmeyer CJ: Peripheral angioplasty balloon technology, Cardiovasc Intervent Radiol 16: 135–143, 1993.

    Article  PubMed  CAS  Google Scholar 

  11. Jacobs AK: Selection of guiding catheters. In Faxon DP, editor: Practical angioplasty, New York, 1993, Raven Press, pp 43–52.

    Google Scholar 

  12. Abele JE: Balloon engineering and materials. In Vlietstra RE, Holmes DR, editors: Coronary balloon angioplasty, Boston, 1994, Blackwell Scientific, pp 292–304.

    Google Scholar 

  13. Faxon DP: Selection of balloon catheters and guidewires. In Faxon DP, editor: Practical angioplasty, New York, 1993, Raven Press, pp 53–70.

    Google Scholar 

  14. Williams DF: The selection of implant materials. In Williams DF, Roaf R, editors: Implants in surgery, London, 1973, Saunders, chap 6.

    Google Scholar 

  15. Sutow EJ, Pollack SR: The biocompatibility of certain stainless steels. In Williams DF, editor: Biocompatibility of clinical implants materials, vol 1, Boca Raton, 1981, CRC Press, chap 3.

    Google Scholar 

  16. Williams DF: The deterioration of materials in use. In Williams DF, Roaf R, editors: Implants in surgery, London, 1973, Saunders, chap 4.

    Google Scholar 

  17. Palmaz JC: Balloon expandable intravascular stent, AJR 150: 1263–1269, 1988.

    PubMed  CAS  Google Scholar 

  18. Crochet D et al: Plasma treatment effects on the tantalum Strecker stent implanted in femoral arteries of sheep, Cardiovasc Intervent Radio 17: 285–291, 1994.

    CAS  Google Scholar 

  19. Lemons JE: Corrosion and biodegradation. In von Recum A, editor: Handbook of biomaterials evaluation, New York, Macmillan, 1986, chap 9.

    Google Scholar 

  20. Fisher AA: Safety of stainless steel in nickel sensitivity, JAMA 221: 1282, 1972.

    Article  Google Scholar 

  21. Fisher AA: Allergic dermatitis presumably due to metallic bodies containing nickel or cobalt, Cutis 19: 285, 1977.

    PubMed  CAS  Google Scholar 

  22. Samitz MH, Katz SA: Nickel dermatitis hazards from prostheses: in vivo and in vitro solubility studies, Br J Dermatol 92: 287, 1975.

    Article  PubMed  CAS  Google Scholar 

  23. Lyell A, Bain WH: Nickel allergy and valve replacement, Lancet 1: 408, 1974.

    Article  PubMed  CAS  Google Scholar 

  24. Pegum JS: Nickel allergy, Lancet 1: 674, 1974.

    Article  PubMed  CAS  Google Scholar 

  25. Williams DF: The response of the body environment to implants. In Williams DF, Roaf R, editors: Implants in surgery, London, 1973, Saunders, chap 5.

    Google Scholar 

  26. Sawyer PN et al: Electrochemical precipitation of blood cells on metal electrodes: an aid in the selection of vascular prostheses, Natl Acad Sci 53: 294, 1965.

    Article  CAS  Google Scholar 

  27. De Palma VA et al: Investigation of three-surface properties of several metals and their relation to blood compatibility, J Biomed Mater Res Symp 3: 37, 1972.

    Article  Google Scholar 

  28. Sawyer PN et al: Electron microscopy and physical chemistry of healing in prosthetic heart valves, skirts and struts, J Thorac Cardiovasc Surg 67 (1): 24, 1974.

    PubMed  CAS  Google Scholar 

  29. Sawyer PN, Sophie Z, O’Shaughnessy AM: Hemocompatibility assessment. In von Recum A, editor: Handbook of biomaterials evaluation, New York, 1986, Macmillan, chap 26.

    Google Scholar 

  30. Palmaz JC: Intravascular stents: tissue—stent interactions and design considerations, AJR 160: 613, 1993.

    PubMed  CAS  Google Scholar 

  31. Robinson KA et al: Correlated microscopic observations of arterial responses to intravascular stenting, Scanning Microsc 3: 665, 1989.

    PubMed  CAS  Google Scholar 

  32. Rousseau H et al: Self-expanding endovascular prosthesis: an experimental study, Radiology 164: 709, 1987.

    PubMed  CAS  Google Scholar 

  33. Greenfield LJ, Savin MA: Comparison of titanium and stainless steel Greenfield vena caval filters, Surgery 106: 820, 1989.

    PubMed  CAS  Google Scholar 

  34. Back M, Kopchok G, Mueller M et al: Changes in arterial wall compliance after endovascular stenting, J Vasc Surg 19: 905–911, 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Palmaz JC et al: Normal and stenotic renal arteries: experimental balloon-expandable intraluminal stenting, Radiology 164: 705, 1987.

    PubMed  CAS  Google Scholar 

  36. Schatz RA: A view of vascular stents, Circulation 79: 445, 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Vorwerk D et al: Neointima formation following arterial placement of self-expanding stents of different radial force: experimental results, Cardiovasc Intervent Radiol 17: 27, 1994.

    Article  PubMed  CAS  Google Scholar 

  38. Barth KH et al: Flexible tantalum stents implanted in aortas and iliac arteries: effects in normal canines, Radiology 175: 91, 1990.

    PubMed  CAS  Google Scholar 

  39. White CJ et al: A new balloon-expandable tantalum coil stent: angiographic patency and histologic findings in an atherogenic swine model, J Am Coll Cardiol 19: 870, 1992.

    Article  PubMed  CAS  Google Scholar 

  40. Sutton CS et al: Titanium-nickel intravascular endoprosthesis: a 2-year study in dogs, AJR 151: 597, 1988.

    PubMed  CAS  Google Scholar 

  41. Roubin G et al: Early and late results of intra-coronary arterial stenting after coronary angioplasty in the dog, Circulation 76: 891, 1987.

    Article  PubMed  CAS  Google Scholar 

  42. Rollins N et al: Self-expanding metallic stents: preliminary evaluation in an atherosclerotic model, Radiology 163: 739, 1987.

    PubMed  CAS  Google Scholar 

  43. Den Otter G: Total prosthetic replacement of atrioventricular valves in the dog, Thorax 27: 105, 1972.

    Article  Google Scholar 

  44. Strecker EP et al: Expandable tubular stents for treatment of arterial occlusive diseases: experimental and clinical results, Radiology 175: 97, 1990.

    PubMed  CAS  Google Scholar 

  45. Von Holst H, Collins P, Steiner L: Titanium, silver and tantalum clips in brain tissue, Acta Neurochir (Wien) 56: 239, 1981.

    Article  Google Scholar 

  46. Keller JC, Lautenschlager EP: Metal and alloys. In von Recum A, editor: Handbook of biomaterials evaluation, New York, 1986, Macmillan, chap 1.

    Google Scholar 

  47. Hearn JA, Robinson KA, Roubin GS: In vitro thrombus formation of stent wires: role of metallic composition and heparin coating [abstract], J Am Coll Cardiol 17: 302A, 1991.

    Google Scholar 

  48. Ribeiro PA et al: A new expandable intracoronary tantalum (Strecker) stent: early experimental results and follow-up to twelve months, Am Heart J 125: 501, 1993.

    Article  PubMed  CAS  Google Scholar 

  49. Fontaine AB et al: Decreased platelets adherence of polymer-coated tantalum stents, J Vasc Intervent Radiol 5: 567, 1994.

    Article  CAS  Google Scholar 

  50. Williams DF: Titanium and titanium alloys. In Williams DF, editor: Biocompatibility of clinical implant materials, vol 1, Boca Raton, 1981, CRC Press, chap 2.

    Google Scholar 

  51. Williams DF: Titanium as a metal for implantation. Part 2. Biological properties and clinical applications, J Med Eng Technol Sept: 266, 1977.

    Google Scholar 

  52. Schetky LM: Shape-memory alloys, Sci Am 241: 74, 1979.

    Article  CAS  Google Scholar 

  53. Cragg AH et al: Nitinol intravascular stents: results of preclinical evaluation, Radiology 189: 775, 1993.

    PubMed  CAS  Google Scholar 

  54. Castleman LS, Motzkin SM: The biocompatibility of nitinol. In Williams DF, editor: Biocompatibility of clinical implant materials, vol 1, Boca Raton, 1981, CRC Press, chap 5.

    Google Scholar 

  55. Haasters J, Bensmann G, Baumgart F: Memory alloys: a new material for implantation in orthopedic surgery. Part II. In: Uhthoff HK, editor: Current concepts of internal fixation of fractures. New York, 1980, Springer-Verlag.

    Google Scholar 

  56. Castleman LS et al: Biocompatibility of nitinol alloy as an implant material, J Biomed Mater Res 10: 695, 1976.

    Article  PubMed  CAS  Google Scholar 

  57. Oonishi H et al: Biological reaction of Ni in Ti-Ni shape memory alloy, Trans Soc Biomater 7: 183, 1984.

    Google Scholar 

  58. Williams DF: The properties and clinical uses of cobalt-chromium alloys. In Williams DF, editor: Biocompatibility of clinical implant materials, vol I, Boca Raton, 1981, CRC Press, chap 4.

    Google Scholar 

  59. Shellock FG, Kanal E: MR procedures and patients with biomedical implants, materials, and devices. In Shellock FG, Kanal E, editors: Magnetic resonance: bioeffects, safety and patient management, New York, 1994, Raven Press, chap 10.

    Google Scholar 

  60. Teitelbaum GP, Bradley WG, Klein BD: MR imaging artifacts, ferromagnetism and magnetic torque of intravascular filters, stents and coils, Radiology 166: 657, 1988.

    PubMed  CAS  Google Scholar 

  61. Matsumoto AH et al: Tantalum vascular stents: in vivo evaluation with MR imaging, Radiology 170: 753, 1989.

    PubMed  CAS  Google Scholar 

  62. Becker GJ: Intravascular stents, general principles and status of lower extremity arterial applications, Circulation 83(suppl I ): 122, 1991.

    Google Scholar 

  63. Fluckiger F et al: Firmness, elasticity and deformation characteristics of metal stents [abstract], Cardiovasc Intervent Radiol 16 (suppl): 19, 1993.

    Google Scholar 

  64. Jedwab MR, Clerc CO: A study of the geometrical and mechanical properties of a self-expanding metallic stent-theory and experiment, J Appl Biomater 4: 77, 1993.

    Article  PubMed  CAS  Google Scholar 

  65. Fallone BG, Wallace S, Gianturco C: Elastic characteristics of self-expanding metallic stents, Invest Radiol 23: 370, 1988.

    Article  PubMed  CAS  Google Scholar 

  66. Abbott WM et al: Effect of compliance mismatch on vascular graft patency, J Vasc Surg 5: 376. 1987.

    PubMed  CAS  Google Scholar 

  67. Hausegger KA et al: Iliac artery stent placement: clinical experience with a nitinol stent, Radiology 190: 199, 1994.

    PubMed  CAS  Google Scholar 

  68. Laird JR et al: Placement and angiographic patency of the Strecker coronary stent, Cathet Cardiovasc Diagn 31: 322, 1994.

    Article  PubMed  CAS  Google Scholar 

  69. Santoian EC, King S: Intravascular stents, intimal proliferation and restenosis [editorial comment], J Am Coll Cardiol 19: 877, 1992.

    Article  PubMed  CAS  Google Scholar 

  70. Greenfield LJ, DeLucia A: Endovascular therapy of venous thromboembolic disease, Surg Clin North Am 72: 969, 1992.

    CAS  Google Scholar 

  71. Greenfield LJ et al: Extended evaluation of the titanium Greenfield vena caval filter, J Vasc Surg 20: 458, 1994.

    Article  PubMed  CAS  Google Scholar 

  72. Teitelbaum GP et al: Vena caval filter splaying: potential complication of use of the titanium Greenfield filter, Radiology 173: 809, 1989.

    PubMed  CAS  Google Scholar 

  73. Ricco JB et al: Percutaneous transvenous caval interruption with the “LGM” filter: early results of a multicenter trial, Ann Vasc Surg 3: 242, 1988.

    Article  Google Scholar 

  74. Dorfman GS: Percutaneous inferior vena cava filters, Radiology 174: 987, 1990.

    PubMed  CAS  Google Scholar 

  75. Balko A, Piasecki GJ, Shah DM et al: Trans-femoral placement of intraluminal polyurethane prosthesis for abdominal aortic aneurysm, J Surg Res 40: 305–309, 1986.

    Article  PubMed  CAS  Google Scholar 

  76. Lawrence DD, Charnsanngavej C, Wright KC et al: Percutaneous endovascular graft: experimental evaluation, Radiology 163: 357–360, 1987.

    PubMed  Google Scholar 

  77. Mirich D, Wright KC, Wallace S et al: Percutaneously placed endovascular grafts for aortic aneurysms: feasibility study, Radiology 170: 1033–1037, 1989.

    PubMed  CAS  Google Scholar 

  78. Laborde JC, Parodi JC, Clem MF et al: Intraluminal bypass of abdominal aortic aneurysm: feasibility study, Radiology 184: 185–190, 1992.

    PubMed  CAS  Google Scholar 

  79. Parodi JC, Palmaz JC, Barone HD: Trans-femoral intraluminal graft implantation for abdominal aortic aneurysms, Ann Vasc Surg 5: 491–499, 1991.

    Article  PubMed  CAS  Google Scholar 

  80. Parodi JC: Endovascular repair of abdominal aortic aneurysms and other arterial lesions, J Vasc Surg 21: 549–557, 1995.

    Article  PubMed  CAS  Google Scholar 

  81. Chuter TAM, Green RM, Ouriel K et al: Trans-femoral endovascular aortic graft placement. J Vasc Surg 18: 185–197, 1993.

    Article  PubMed  CAS  Google Scholar 

  82. Chuter TAM, Wendt G, Hopkinson BR et al: European experience with a system for bifurcated stent-graft insertion, J Endovasc Surg 4: 13–22, 1997.

    Article  PubMed  CAS  Google Scholar 

  83. May J,White G, Waugh R et al: Treatment of complex abdominal aortic aneurysms by a combination of endoluminal and extraluminal aortofemoral grafts, J Vasc Surg 19: 924–933, 1994.

    Article  Google Scholar 

  84. White GH, Yu W, May J et al: Three-year experience with the White-Yu endovascular GAD graft for transluminal repair of aortic and iliac aneurysms. J Endovasc Surg 4: 124–136, 1997.

    Article  PubMed  CAS  Google Scholar 

  85. Moore WS, Rutherford RB: Transluminal endovascular repair of abdominal aortic aneurysm: results of the North American EVT phase I trial. J Vasc Surg 23: 543–553, 1996.

    Article  PubMed  CAS  Google Scholar 

  86. White RA, Donayre CE, Walot I et al: Preliminary clinical outcome and imaging criterion for endovascular prosthesis development on high-risk patients who have aortoiliac and traumatic arterial lesions. J Vasc Surg 24: 556–571, 1996.

    Article  PubMed  CAS  Google Scholar 

  87. White RA, Fogarty TJ, Kopchok GE et al: Evaluation of a modular endovascular bifurcation prosthesis in a canine aortic aneurysm model. J Vasc Surg 24: 1034–1042, 1996.

    Article  PubMed  CAS  Google Scholar 

  88. May J, White G, Waugh R et al: Transluminal placement of a prosthetic graft-stent device for treatment of subclavian artery aneurysm. J Vasc Surg 18: 1056–1059, 1993.

    Article  PubMed  CAS  Google Scholar 

  89. Marin ML, Veith FJ, Panetta TF et al: Trans-femoral endoluminal stented graft repair of a popliteal artery aneurysm. J Vasc Surg 19: 754–757, 1994.

    Article  PubMed  CAS  Google Scholar 

  90. Diethrich EB, Papazoglon K: Endoluminal grafting for aneurysmal and occlusive disease in the superficial femoral artery: early experience. J Endovasc Surg 2: 225–239, 1995.

    Article  PubMed  CAS  Google Scholar 

  91. Cragg AH, Dake MD: Percutaneous femoropopliteal graft placement. Radiology 187; 643–646, 1993.

    PubMed  CAS  Google Scholar 

  92. Henry M, Amar M, Ethernenot G et al: Initial experience with the Cragg Endopro System 1 in the interventional treatment of peripheral vascular disease, J Endovasc Surg 1: 31–43, 1994.

    Article  PubMed  CAS  Google Scholar 

  93. Marin ML, Veith FJ, Sanchez LA et al: Endovascular aortoiliac grafts in combination with standard infrainguinal arterial bypasses in the management of limb-threatening ischemia: preliminary report, J Vasc Surg 22: 316–325, 1995.

    Article  PubMed  CAS  Google Scholar 

  94. Ohki T, Marin ML, Veith FJ et al: Endovascular aortounifemoral grafts and femorofemoral bypass for bilateral limb-threatening ischemia, J Vasc Surg 24: 984–997, 1996.

    Article  PubMed  CAS  Google Scholar 

  95. Marin ML, Veith FJ, Panetta TF et al: Transluminally placed endovascular stented graft repair for arterial trauma, J Vasc Surg 20: 466–473, 1994.

    Article  PubMed  CAS  Google Scholar 

  96. Back MR, Kopchok GE, White RA et al: Endo-luminal placement of PTFE graft-stent devices in a canine model. Vasc Surg 28: 441–448, 1994.

    Article  Google Scholar 

  97. Turner RJ, Hoffman HL, Weinberg SL: Knitted Dacron double velour grafts. In Stanley JC, editor: Biologic and synthetic vascular prostheses, Orlando, 1982, Grune & Stratton, 509–522.

    Google Scholar 

  98. Gonza ER, Marble AE, Shaw A, Holland JG: Age related changes in mechanics of the aorta and pulmonary artery in man, J Appl Physiol 36: 407, 1974.

    Google Scholar 

  99. Kinley CE, Marble AE: Compliance: a continuing problem with vascular grafts, J Cardiovasc Surg 21: 163–170, 1980.

    CAS  Google Scholar 

  100. Walden R, L’Italien GJ, Megerman J, Abbott WM: Matched elastic properties and successful arterial grafting, Arch Surg 115: 1166–1169, 1980.

    Article  PubMed  CAS  Google Scholar 

  101. Snyder RW, Botzko KM: Woven, knitted and externally supported Dacron vascular prostheses. In Stanley JC, editor: Biologic and synthetic vascular prostheses, Orlando, 1982, Grune & Stratton, pp 485–494.

    Google Scholar 

  102. Diethrich EB: Initial experience with in vivo expansion of PTFE in the treatment of occlusive and aneurysmal disease [abstract], J Endovasc Surg 2: 308–309, 1995.

    Google Scholar 

  103. Bergeron P, Henric A, Bonnet C, Reim R: Tensile characteristics of expanded PTFE for use in endoluminal grafting [abstract], J Endovasc Surg 2: 302–303, 1995.

    Article  Google Scholar 

  104. Palmaz JC, Tio FO, Laborde JC et al: Use of stents covered with PTFE in experimental abdominal aortic aneurysm, J Vasc Intervent Radiol 6: 879–885, 1995.

    Article  CAS  Google Scholar 

  105. Wesolowski SA, Fries CC, Karlson KE et al: Porosity, primary determinant of ultimate fate of synthetic grafts, Surgery 50: 91–101, 1961.

    PubMed  CAS  Google Scholar 

  106. Ottinger LW, Darling RC, Werthlin LS et al: Failure of ultra light weight knitted Dacron grafts in arterial reconstruction, Arch Surg 111: 146–149, 1976.

    Article  PubMed  CAS  Google Scholar 

  107. Szilagyi E, Pfeifer JR, DeRusso FJ: Long-term evaluation of plastic arterial substitutes: an experimental study, Surgery 55: 165–183, 1964.

    PubMed  CAS  Google Scholar 

  108. Golden MA, Hanson SR, Kirkman TR et al: Healing of PTFE arterial grafts is influenced by graft porosity, J Vasc Surg 11: 838–845, 1990.

    PubMed  CAS  Google Scholar 

  109. Kohler TR, Stratton JR, Kirkman TR et al: Conventional versus high-porosity PTFE grafts: clinical evaluation, Surgery 112: 901–907, 1992.

    PubMed  CAS  Google Scholar 

  110. Bennett JG, Trono R, Norman JC et al: Experimental comparisons of vascular grafts, Cardiovasc Dis Bull Tex Heart Inst 4: 18–29, 1977.

    Google Scholar 

  111. Lindenauer SM, Weber TR, Miller TA et al: Velour vascular prostheses, Trans Am Soc Artif Intern Organs 20: 314–319, 1974.

    Google Scholar 

  112. Guidoin R, Gosselin C, Martin L et al: Polyester prostheses as substitutes in the thoracic aorta of dogs. I. Evaluation of commercial prostheses, J Biomed Mater Res 17: 1049–1077, 1988.

    Article  Google Scholar 

  113. Claggett PC: In vivo evaluation of platelet reactivity with vascular prostheses. In Stanley JC, editor: Biologic and synthetic vascular prostheses, Orlando, 1982, Grune & Stratton, pp 131–152.

    Google Scholar 

  114. Ohki T, Marin ML, Veith FJ et al: Anastomotic intimal hyperplasia: a comparison between conventional and endovascular stent graft techniques, J Surg Res 69: 255–267, 1997.

    Article  PubMed  CAS  Google Scholar 

  115. Ombrellaro MP, Stevens SL, Freeman MB, Goldman MH: Reendothelialization and platelet derived growth factor activity associated with intraarterial stented grafts, Vasc Surg 31: 631–637, 1997.

    Article  Google Scholar 

  116. Marin ML, Veith FJ, Cynamon J et al: Human transluminally placed endovascular stented grafts: preliminary histopathologic analysis of healing grafts in aortoiliac and femoral artery occlusive disease, J Vasc Surg 21: 595–604, 1995.

    Article  PubMed  CAS  Google Scholar 

  117. White RA, Donayre CE, deVirgilio C et al: Deployment technique and histopathological evaluation of an endoluminal vascular prosthesis used to repair an iliac artery aneurysm, J Endovasc Surg 3: 262–269, 1996.

    Article  PubMed  CAS  Google Scholar 

  118. McGahan TJ, Barry GA, McGahan SL et al: Results of autopsy 7 months after successful endoluminal treatment of an infrarenal abdominal aortic aneurysm, J Endovasc Surg 2: 348–355, 1995.

    Article  PubMed  CAS  Google Scholar 

  119. Hayoz D, Do-Dai D, Mahler F et al: Aortic inflammatory reaction associated with endoluminal bypass grafts, J Endovasc Surg 4: 354–360, 1997.

    Article  PubMed  CAS  Google Scholar 

  120. Norgren L, Swartbol P: Biological responses to endovascular treatment of abdominal aortic aneurysms, J Endovasc Surg 4: 169–173, 1997.

    Article  PubMed  CAS  Google Scholar 

  121. White RA, Verbin C, Kopchok G et al: The role of cinefluoroscopy and intravascular ultrasonography in evaluating the deployment of experimental endovascular prostheses, J Vasc Surg 21: 365–374, 1995.

    Article  PubMed  CAS  Google Scholar 

  122. Matlaga BF, Yasenchak LP, Salthouse TN: Tissue response to implanted polymers: the significance of sample shape, J Biomed Mater Res 10: 391–397, 1976.

    Article  PubMed  CAS  Google Scholar 

  123. White RA, Kopchok G, Zalewski M et al: Comparison of the deployment and healing of thin walled expanded PTFE stented grafts and covered stents, Ann Vasc Surg 10: 336–346, 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Back, M.R., White, R.A. (1999). Biomaterials: Considerations for Endovascular Devices. In: White, R.A., Fogarty, T.J. (eds) Peripheral Endovascular Interventions. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3105-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3105-7_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3107-1

  • Online ISBN: 978-1-4757-3105-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics