Abstract

Fluorescence quenching refers to any process which decreases the fluorescence intensity of a sample. A variety of molecular interactions can result in quenching. These include excited-state reactions, molecular rearrangements, energy transfer, ground-state complex formation, and collisional quenching. In this chapter we will be concerned primarily with quenching resulting from collisional encounters between the fluorophore and quencher, which is called collisional or dynamic quenching. Static quenching is a frequent complicating factor in the analysis of quenching data, but it can also be a valuable source of information about binding between the fluorescent sample and the quencher. In addition to the processes described above, apparent quenching can occur due to the optical properties of the sample. For example, high optical densities or turbidity can result in decreased fluorescence intensities. This is a trivial type of quenching which contains little molecular information. Throughout this chapter, we will assume that such trivial effects are not the cause of the observed decreases in fluorescence intensity.

Keywords

Fluorescence Quenching Tryptophan Residue Flavin Adenine Dinucleotide Static Quenching Dynamic Quenching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kautsky, H., 1939, Quenching of luminescence by oxygen, Trans. Faraday Soc. 35: 216–219.Google Scholar
  2. 2.
    Knibbe, H., Rehm, D., and Weller, A., 1968, Intermediates and kinetics of fluorescence quenching by electron transfer, Ber. Bunsenges. Phys. Chem. 72: 257–263.Google Scholar
  3. 3.
    Kasha, M., 1952, Collisional perturbation of spin—orbital coupling and the mechanism of fluorescence quenching. A visual demonstration of the perturbation, J. Chem. Phys. 20: 71–74.Google Scholar
  4. 4.
    Steiner, R. E, and Kirby, E. R, 1969, The interaction of the ground and excited states of indole derivatives with electron scavengers, J. Phys. Chem. 73: 4130–4135.Google Scholar
  5. 5.
    Eftink, M. R., and Ghiron, C., 1981, Fluorescence quenching studies with proteins, Anal. Biochem. 114: 199–227.Google Scholar
  6. 6.
    Eftink, M. R., 1991, Fluorescence quenching reactions: Probing biological macromolecular structures, in Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, T. G. Dewey (ed.), Plenum Press, New York, pp. 1–41.Google Scholar
  7. 7.
    Eftink, M. R., 1991, Fluorescence quenching: Theory and applications, in Topics in Fluorescence Spectroscopy, Volume 2, Principles, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 53–126.Google Scholar
  8. 8.
    Davis, G. A., 1973, Quenching of aromatic hydrocarbons by alkylpyridinium halides, J. Chem. Soc., Chem. Commun. 1973: 728729.Google Scholar
  9. 9.
    Shinitzky, M., and Rivnay, B., 1977, Degree of exposure of membrane proteins determined by fluorescence quenching, Biochemistry 16: 982–986.Google Scholar
  10. 10.
    Spencer, R. D., and Weber, G., 1972, Thermodynamics and kinetics of the intramolecular complex in flavin-adenine dinucleotide, in Structure and Function of Oxidation Reduction Enzymes, A. Akeson and A. Ehrenberg (eds.), Pergamon Press, New York, pp. 393–399.Google Scholar
  11. 11.
    Scott, T. G., Spencer, R. D., Leonard, N. J., and Weber, G., 1970, Emission properties of NADH. Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, and simplified synthetic models, J. Am. Chem. Soc. 92: 687–695.Google Scholar
  12. 12.
    Ware, W. R., 1962, Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process, J. Phys. Chem. 66: 455–458.Google Scholar
  13. 13.
    Othmer, D. E, and Thakar, M. S., 1953, Correlating diffusion coefficients in liquids, Ind. Eng. Chem. 45: 589–593.Google Scholar
  14. 14.
    Lakowicz, J. R., and Weber, G., 1973, Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules, Biochemistry 12: 4161–4170.Google Scholar
  15. 15.
    Eftink, M. R., and Ghiron, C. A., 1976, Fluorescence quenching of indole and model micelle systems, J. Phys. Chem. 80: 486–493.Google Scholar
  16. 16.
    Johnson, D. A., and Yguerabide, J., 1985, Solute accessibility to N’-fluorescein isothiocyanate-lysine-23, cobra a-toxin bound to the acetylcholine receptor, Biophys. J. 48: 949–955.Google Scholar
  17. 17.
    Kubota, Y., Nakamura, H., Morishita, M., and Fujisaki, Y., 1978, Interaction of 9-aminoacridine with 7-methylguanosine and 1, N–ethenoadenosine monophosphate, Photochem. Photobiol. 27: 479–481.Google Scholar
  18. 18.
    Kubota, Y., Motoda, Y., Shigemune, Y., and Fujisaki, Y, 1979, Fluorescence quenching of 10-methylacridinium chloride by nucleotides, Photochem. Photobiol. 29: 1099–1106.Google Scholar
  19. 19.
    Seidel, C. A. M., Schulz, A., and Sauer, M. H. M., 1996, Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies, J. Phys. Chem. 100: 5541–5553.Google Scholar
  20. 20.
    Casali, E., Petra, P. H., and Ross, J. B. A., 1990, Fluorescence investigation of the sex steroid binding protein of rabbit serum: Steroid binding and subunit dissociation, Biochemistry 29: 93349343.Google Scholar
  21. 21.
    Frank, I. M., and Vavilov, S. I., 1931, Über die wirkungssphäre der auslöschuns-vargänge in den flureszierenden flussigHeiten. Z Phys. 69: 100–110.Google Scholar
  22. 22.
    Maniara, G., Vanderkooi, J. M., Bloomgarden, D. C., and Koloczek, H., 1988, Phosphorescence from 2-(p-toluidinyl)naphthalene-6-sulfonate and 1-anilinonaphthalene-8-sulfonate, commonly used fluorescence probes of biological structures, Photochem. Photobiol. 47: 207–208.Google Scholar
  23. 23.
    Kim, H., Crouch, S. R., and Zabik, M. J., 1989, Room-temperature phosphorescence of compounds in mixed organized media: Synthetic enzyme model-surfactant system, Anal. Chem. 61: 2475 2478.Google Scholar
  24. 24.
    Encinas, M. V, Lissi, E. A., and Rufs, A. M., 1993, Inclusion and fluorescence quenching of 2,3-dimethylnaphthalene in [3-cyclodextrin cavities, Photochem. Photobiol. 57: 603–608.Google Scholar
  25. 25.
    Turro, N. J., Bolt, J. D., Kuroda, Y, and Tabushi, I., 1982, A study of the kinetics of inclusion of halonaphthalenes with l-cyclodextrin via time correlated phosphorescence, Photochem. Photobiol. 35: 69–72.Google Scholar
  26. 26.
    Waka, Y., Hamamoto, K., and Mataga, N., 1980, Heteroexcimer systems in aqueous micellar solutions, Photochem. Photobiol. 32: 27–35.Google Scholar
  27. 27.
    Atherton, S. J., and Beaumont, P. C., 1986, Quenching of the fluorescence of DNA-intercalated ethidium bromide by some transition metal ions, J. Phys. Chem. 90: 2252–2259.Google Scholar
  28. 28.
    Pastemack, R. F., Caccam, M., Keogh, B., Stephenson, T. A., Williams, A. P., and Gibbs, E. J., 1991, Long-range fluorescence quenching of ethidium ion by cationic porphyrins in the presence of DNA, J. Am. Chem. Soc. 113: 6835–6840.Google Scholar
  29. 29.
    Poulos, A. T., Kuzmin, V, and Geacintov, N. E., 1982, Probing the microenvironment of benzo[a]pyrene diol epoxide—DNA adducts by triplet excited state quenching methods, J. Biochem. Biophys. Methods 6: 269–281.Google Scholar
  30. 30.
    Zinger, D., and Geacintov, N. F., 1988, Acrylamide and molecular oxygen fluorescence quenching as a probe of solvent-accessibility of aromatic fluorophores complexed with DNA in relation to their conformations: Coronene-DNA and other complexes, Photochem. Photobiol. 47: 181–188.Google Scholar
  31. 31.
    Suh, D., and Chaires, J. B., 1995, Criteria for the mode of binding of DNA binding agents, Bioorgan. Med. Chem. 3: 723–728.Google Scholar
  32. 32.
    Ando, T., and Asai, H., 1980, Charge effects on the dynamic quenching of fluorescence of 1,N6-ethenoadenosine oligophosphates by iodide, thallium (I) and acrylamide, J. Biochem. 88: 255–264.Google Scholar
  33. 33.
    Ando, T., Fujisaki, H., and Asai, H., 1980, Electric potential at regions near the two specific thiols of heavy meromyosin determined by the fluorescence quenching technique, J. Biochem. 88: 265–276.Google Scholar
  34. 34.
    Miyata, H., and Asai, H., 1981, Amphoteric charge distribution at the enzymatic site of 1,N6-ethenoadenosine triphosphate-binding heavy meromyosin determined by dynamic fluorescence quenching, J. Biochem. 90: 133–139.Google Scholar
  35. 35.
    Midoux, P., Wahl, P., Auchet, J.-C., and Monsigny, M., 1984, Fluorescence quenching of tryptophan by trifluoroacetamide, Biochim. Biophys. Acta 801: 16–25.Google Scholar
  36. 36.
    Lehrer, S. S., 1971, Solute perturbation of protein fluorescence. The quenching of the tryptophan fluorescence of model compounds and of lysozyme by iodide ion, Biochemistry 10: 3254–3263.Google Scholar
  37. 37.
    Eftink, M. R., and Selvidge, L. A., 1982, Fluorescence quenching of liver alcohol dehydrogenase by acrylamide, Biochemistry 21: 117–125.Google Scholar
  38. 38.
    Eftink, M., and Hagaman, K. A., 1986, Fluorescence lifetime and anisotropy studies with liver alcohol dehydrogenase and its complexes, Biochemistry 25: 6631–6637.Google Scholar
  39. 39.
    Sontag, B., Reboud, A.-M., Divita, G., Di Pietro, A., Guillot, D., and Reboud, J.P., 1993, Intrinsic tryptophan fluorescence of rat liver elongation factor eEF-2 to monitor the interaction with guanylic and adenylic nucleotides and related conformational changes, Biochemistry 32: 1976–1980.Google Scholar
  40. 40.
    Xing, D., Dorr, R., Cunningham, R. P., and Scholes, C. P., 1995, Endonuclease III interactions with DNA substrates. 2. The DNA repair enzyme endonuclease III binds differently to intact DNA and to apyrimidinic/apurinic DNA substrates as shown by tryptophan fluorescence quenching, Biochemistry 34: 2537–2544.Google Scholar
  41. 41.
    Wasylewski, M., Malecki, J., and Wasylewski, Z., 1995, Fluorescence study of Escherichia coli cyclic AMP receptor protein, J. Protein Chem. 14: 299–308.Google Scholar
  42. 42.
    Wells, T. A., Nakazawa, M., Manabe, K., and Song, P.-S., 1994, A conformational change associated with the phototransformation of Pisum phytochrome A as probed by fluorescence quenching, Biochemistry 33: 708–712.Google Scholar
  43. 43.
    Eftink, M. R., Zajicek, J. L., and Ghiron, C. A., 1977, A hydrophobic quencher of protein fluorescence: 2,2,2-Trichloroethanol, Biochim. Biophys. Acta 491: 473–481.Google Scholar
  44. 44.
    Blatt, E., Husain, A., and Sawyer, W. H., 1986, The association of acrylamide with proteins. The interpretation of fluorescence quenching experiments, Biochim. Biophys. Acta 871: 6–13.Google Scholar
  45. 45.
    Eftink, M. R., and Ghiron, C. A., 1987, Does the fluorescence quencher acrylamide bind to proteins? Biochim. Biophys. Acta 916: 343–349.Google Scholar
  46. 46.
    Punyiczki, M., Norman, J. A., and Rosenberg, A., 1993, Interaction of acrylamide with proteins in the concentration range used for fluorescence quenching studies, Biophys. Chem. 47: 9–19.Google Scholar
  47. 47.
    Bastyns, K., and Engelborghs, Y, 1992, Acrylamide quenching of the fluorescence of glyceraldehyde-3-phosphate dehydrogenase: Reversible and irreversible effects, Photochem. Photobiol. 55: 9–16.Google Scholar
  48. 48.
    Merrill, A. R., Palmer, L. R., and Szabo, A. G., 1993, Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin El channel peptide. Structural characterization of the insertion-competent state, Biochemistry 32: 6974–6981.Google Scholar
  49. 49.
    Wasylewski, Z., Kaszycki, P., Guz, A., and Stryjewski, W., 1988, Fluorescence quenching resolved spectra of fluorophores in mixtures and micellar solutions, Eur. J. Biochem. 178: 471–476.Google Scholar
  50. 50.
    Wasylewski, Z., Koloczek, H., and Wasniowska, A., 1988, Fluorescence quenching resolved spectroscopy of proteins, Eur. J. Biochem. 172: 719–724.Google Scholar
  51. 51.
    Laws, W. R., and Shore, J. D., 1978, The mechanism of quenching of liver alcohol dehydrogenase fluorescence due to temary complex formation, J. Biol. Chem. 23: 8593–8597.Google Scholar
  52. 52.
    Stryjewski, W., and Wasylewski, Z., 1986, The resolution of heterogeneous fluorescence of multitryptophan-containing proteins studied by a fluorescence quenching method, Eur. J. Biochem. 158: 547–553.Google Scholar
  53. 53.
    Blicharska, Z., and Wasylewski, Z., 1995, Fluorescence quenching studies of trp repressor using single-tryptophan mutants, J. Protein Chem. 14: 739–746.Google Scholar
  54. 54.
    Wasylewski, Z., Kaszycki, P., and Drwiega, M., 1996, A fluorescence study of Tn 10-encoded tet repressor, J. Protein Chem. 15: 45–52.Google Scholar
  55. 55.
    Hansen, D., Altschmied, L., and Hillen, W., 1987, Engineered tet repressor mutants with single tryptophan residues as fluorescent probes, J. Biol. Chem. 29: 14030–14035.Google Scholar
  56. 56.
    Lange, R., Anzenbacher, P., Müller, S., Maurin, L., and Balny, C., 1994, Interaction of tryptophan residues of cytochrome P45scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide, Eur. J. Biochem. 226: 963–970.Google Scholar
  57. 57.
    Johansson, J. S., Eckenhoff, R. G., and Dutton, L., 1995, Binding of halothane to serum albumin demonstrated using tryptophan fluorescence, Anesthesiology 83: 316–324.Google Scholar
  58. 58.
    Johansson, J. S., 1997, Binding of the volatile anesthetic chloroform to albumin demonstrated using tryptophan fluorescence quenching, J. Biol. Chem. 272: 17961–17965.Google Scholar
  59. 59.
    Gonzalez-Jimenez, J., Frutos, G., and Cayre, I., 1992, Fluorescence quenching of human serum albumin by xanthines, Biochem. Pharmacol. 44: 824–826.Google Scholar
  60. 60.
    Walter, N. G., and Burke, J. M., 1997, Real-time monitoring of hairpin ribozyme kinetics through base-specific quenching of fluorescein-labeled substrates, RNA 3: 392–404.Google Scholar
  61. 61.
    Jezewska, M. J., and Bujalowski, W., 1997, Quantitative analysis of ligand—macromolecule interactions using differential dynamic quenching of the ligand fluorescence to monitor the binding, Biophys. Chem. 64: 253–269.Google Scholar
  62. 62.
    Eftink, M. R., Jia, Y.-W., Graves, D. E., Wiczk, W., Gryczynski, I., and Lakowicz, J. R., 1989, Intramolecular fluorescence quenching in covalent acrylamide—indole adducts, Photochem. Photobiol. 49: 725–729.Google Scholar
  63. 63.
    Green, S. A., Simpson, D. J., Zhou, G., Ho, P. S., and Blough, N. V., 1990, Intramolecular quenching of excited singlet states by stable nitroxyl radicals, J. Am. Chem. Soc. 112: 7337–7346.Google Scholar
  64. 64.
    Chuang, T. J., Cox, R. J., and Eisenthal, K. B., 1974, Picosecond studies of the excited charge-transfer interactions in anthracene(CH2)3-N,N-dimethylaniline systems, J. Am. Chem. Soc. 96: 6828–6831.Google Scholar
  65. 65.
    Migita, M., Okada, T., Mataga, N., Sakata, Y., Misumi, S., Nakashima, N., and Yoshihara, K., 1981, Picosecond laser spectroscopy of intramolecular heteroexcimer systems. Time-resolved fluorescence studies of p-(CH3)2NC6H4-(CH2)5 (9-anthryl), p-(CH3)2NC614-(CH2)n- (1-pyrenyl) systems and 9,9’-bianthryl, Bull. Chem. Soc. Jpn. 54: 3304–3311.Google Scholar
  66. 66.
    Basu, G., Anglos, D., and Kuki, A., 1993, Fluorescence quenching in a strongly helical peptide series: The role of noncovalent pathways in modulating electronic interactions, Biochemistry 32: 3067–3076.Google Scholar
  67. 67.
    Strambini, G. B., and Gonnelli, M., 1995, Tryptophan phosphorescence in fluid solution, J Am. Chem. Soc. 117: 7646–7651.Google Scholar
  68. 68.
    Englander, S. W., Calhoun, D. B., and Englander, J. J., 1987, Biochemistry without oxygen, Anal. Biochem. 161: 300–306.Google Scholar
  69. 69.
    Zhang, H. R., Zhang, J., Wei, Y. S., Jin, E. J., and Liu, C. S., 1997, Study of new facile deoxygenation methods in cyclodextrin induced room temperature phosphorescence, Anal. Chim. Acta 357: 119–125.Google Scholar
  70. 70.
    Cioni, P., Puntoni, A., and Strambini, G. B., 1993, Tryptophan phosphorescence as a monitor of the solution structure of phosphoglycerate kinase from yeast, Biophys. Chem. 46: 47–55.Google Scholar
  71. 71.
    Gonnelli, M., and Strambini, G. B., 1993, Glycerol effects on protein flexibility: A tryptophan phosphorescence study, Biophys. J. 65: 131–137.Google Scholar
  72. 72.
    Strambini, G. B., and Gabellieri, E., 1996, Proteins in frozen solutions: Evidence of ice-induced partial unfolding, Biophys. J. 70: 971–976.Google Scholar
  73. 73.
    Vanderkooi, J. M., Calhoun, D. B., and Englander, S. W., 1987, On the prevalence of room-temperature protein phosphorescence, Science 236: 568–569.Google Scholar
  74. 74.
    Tuna, N. J., Cox, G. S., and Li, X., 1983, Remarkable inhibition of oxygen quenching of phosphorescence by complexation with cyclodextrins, Photochem. Photobiol. 37: 149–153.Google Scholar
  75. 75.
    Gonnelli, M., and Strambini, G. B., 1995, Phosphorescence lifetime of tryptophan in proteins, Biochemistry 34: 13847–13857.Google Scholar
  76. 76.
    Wright, W. W., Owen, C. S., and Vanderkooi, J. M., 1992, Penetration of analogues of H2O and CO2 in proteins studied by room temperature phosphorescence of tryptophan, Biochemistry 31: 6538–6544.Google Scholar
  77. 77.
    Strambini, G. B., 1987, Quenching of alkaline phosphatase phosphorescence by 02 and NO, Biophys. J. 52: 23–28.Google Scholar
  78. 78.
    Boaz, H., and Rollefson, G. K., 1950, The quenching of fluorescence. Deviations from the Stern—Volmer law, J. Am. Chem. Soc. 72: 3425–3443.Google Scholar
  79. 79.
    Eftink, M. R., and Ghiron, C. A., 1976, Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies, Biochemistry 15: 672–680.Google Scholar
  80. 80.
    Kuzmin, M. G., and Guseva, L. N., 1969, Donor—acceptor complexes of singlet excited states of aromatic hydrocarbons with aliphatic amines, Chem. Phys. Lett. 3: 71–72.Google Scholar
  81. 81.
    Rehm, D., and Weller, A., 1970, Kinetics of fluorescence quenching by electron and H-atom transfer, Israel J. Chem. 8: 259–271.Google Scholar
  82. 82.
    Obyknovennaya, I. E., Vasileva, I. M., and Cherkasov, A. S., 1986, Quenching of the fluorescence of anthracene by dimethylaniline in aqueous-micellar solvent and formation of luminescent exciplexes, Opt. Spectrosc. 60: 169–171.Google Scholar
  83. 83.
    Lewis, E. D., and Bassani, D. M., 1992, Formation and decay of styrene-amine exciplexes, J. Photochem. Photobiol. A: Chem. 66: 43–52.Google Scholar
  84. 84.
    Schneider, S., Stammler, W., Bierl, R., and Jager, W., 1994, Ultra-fast photoinduced charge separation and recombination in weakly bound complexes between oxazine dyes and N,N-dimethylaniline, Chem. Phys. Lett. 219: 433–439.Google Scholar
  85. 85.
    Yoshihara, K., Yartsev, A., Nagasawa, Y., Kandori, H., Douhal, A., and Kemnitz, K., 1993, Femtosecond intermolecular electron transfer between dyes and electron-donating solvents, Pure Appl. Chem. 65: 1671–1675.Google Scholar
  86. 86.
    Bisht, P. B., and Tripathi, H. B., 1993, Fluorescence quenching of carbazole by triethylamine: Exciplex formation in polar and non-polar solvents, J. Lumin. 55: 153–158.Google Scholar
  87. 87.
    Sikaris, K. A., and Sawyer, W. H., 1982, The interaction of local anaesthetics with synthetic phospholipid bilayers, Biochem. Pharmacol. 31: 2625–2631.Google Scholar
  88. 88.
    Fernandez, M. S., and Calderon, E., 1990, The local anaesthetic tetracaine as a quencher of perylene fluorescence in micelles, J. Photochem. Photobiol. B: Biol. 7: 75–86.Google Scholar
  89. 89.
    Winkler, M. H., 1969, A fluorescence quenching technique for the investigation of the configurations of binding sites for small molecules, Biochemistry 8: 2586–2590.Google Scholar
  90. 90.
    Berlman, I. B., 1973, Empirical study of heavy-atom collisional quenching of the fluorescence state of aromatic compounds in solution, J. Phys. Chem. 77: 562–567.Google Scholar
  91. 91.
    James, D. R., and Ware, W. R., 1985, Multiexponential fluorescence decay of indole-3-alkanoic acids, J. Phys. Chem. 89: 5450–5458.Google Scholar
  92. 92.
    Illsley, N. R, and Verkman, A. S., 1987, Membrane chloride transport measured using a chloride-sensitive fluorescent probe, Biochemistry 26: 1215–1219.Google Scholar
  93. 93.
    Chao, A. C., Dix, J. A., Sellers, M. C., and Verkman, A. S., 1989, Fluorescence measurement of chloride transport in monolayer cultured cells, Biophys. J. 56: 1071–1081.Google Scholar
  94. 94.
    Verkman, A. S., 1990, Development and biological applications of chloride-sensitive fluorescent indicators, Am. J. Phys. 253: C375 - C388.Google Scholar
  95. 95.
    Martin, A., and Narayanaswamy, R., 1997, Studies on quenching of fluorescence of reagents in aqueous solution leading to an optical chloride-ion sensor, Sensors Actuators B 38–39: 330–333.Google Scholar
  96. 96.
    Daems, D., Boens, N., and Schryver, F. C., 1989, Fluorescence quenching with lindane in small unilamellar L,tx-dimyristoylphosphatidylcholine vesicles, Eur. Biophys. J. 17: 25–36.Google Scholar
  97. 97.
    Namilci, A., Nakashima, N., and Yoshihara, K., 1979, Fluorescence quenching due to the electron transfer. Indole-chloromethanes in rigid ethanol glass, J. Chem. Phys. 71: 925–930.Google Scholar
  98. 98.
    Johnson, G. E., 1980, Fluorescence quenching of carbazoles, J. Phys. Chem. 84: 2940–2946.Google Scholar
  99. 99.
    Jones, O. T., and Lee, A. G., 1985, Interactions of hexachlorocyclohexanes with lipid bilayers, Biochim. Biophys. Acta 812: 731–739.Google Scholar
  100. 100.
    Hariharan, C., Vijaysree, V., and Mishra, A. K., 1997, Quenching of 2,5-diphenyloxazole (PPO) fluorescence by metal ions, J. Lu-min. 75: 205–211.Google Scholar
  101. 101.
    Morris, S. J., Bradley, D., and Blumenthal, R., 1985, The use of cobalt ions as a collisional quencher to probe surface charge and stability of fluorescently labeled bilayer vesicles, Biochim. Biophys. Acta 818: 365–372.Google Scholar
  102. 102.
    Homan, R., and Eisenberg, M., 1985, A fluorescence quenching technique for the measurement of paramagnetic ion concentrations at the membrane/water interface. Intrinsic and X537A-mediated cobalt fluxes across lipid bilayer membranes, Biochim. Biophys. Acta 812: 485–492.Google Scholar
  103. 103.
    Salthammer, T, Dreeskamp, H., Birch, D. J. S., and Imhof, R. E., 1990, Fluorescence quenching of perylene by Cot+ ions via energy transfer in viscous and non-viscous media, J. Photochem. Photobiol., A: Chem. 55: 53–62.Google Scholar
  104. 104.
    Holmes, A. S., Birch, D. J. S., Suhling, K., Imhof, R. E., Salthammer, T., and Dreeskamp, H., 1991, Evidence for donor-donor energy transfer in lipid bilayers: Perylene fluorescence quenching by Cot+ ions, Chem. Phys. Lett. 186: 189–194.Google Scholar
  105. 105.
    Birch, D. J. S., Suhling, K., Holmes, A. S., Salthammer, T., and Imhof, R. E., 1992, Fluorescence energy transfer to metal ions in lipid bilayers, Proc. SPIE 1640: 707–718.Google Scholar
  106. 106.
    Perochon, E., and Tocanne, J.-E, 1991, Synthesis and phase properties of phosphatidylcholine labeled with 8-(2-anthroyl)octanoic acid, a solvatochromic fluorescent probe, Chem. Phys. Lipids 58: 7–17.Google Scholar
  107. 107.
    Fucaloro, A. E, Forster, L. S., and Campbell, M. K., 1984, Fluorescence quenching of indole by dimethylformamide, Photochem. Photobiol. 39: 503–506.Google Scholar
  108. 108.
    Swadesh, J. K., Mui, P. W., and Scheraga, H. A., 1987, Thermodynamics of the quenching of tyrosyl fluorescence by dithiothreitol, Biochemistry 26: 5761–5769.Google Scholar
  109. 109.
    Valentino, M. R., and Boyd, M. K., 1995, Ether quenching of singlet excited 9-arylxanthyl cations, J. Photochem. Photobiol. 89: 7–12.Google Scholar
  110. 110.
    Medinger, T., and Wilkinson, F., 1965, Mechanism of fluorescence quenching in solution I. Quenching of bromobenzene, Trans. Faraday Soc. 61: 620–630.Google Scholar
  111. 111.
    Ahmad, A., and Durocher, G., 1981, How hydrogen bonding of carbazole to ethanol affects its fluorescence quenching rate by electron acceptor quencher molecules, Photochem. Photobiol. 34: 573–578.Google Scholar
  112. 112.
    Bowen, E. J., and Metcalf, W. S., 1951, The quenching of anthracene fluorescence, Proc. R. Soc. London 206A: 437–447.Google Scholar
  113. 113.
    Schmidt, R., Janssen, W., and Brauer, H.-D., 1989, Pressure effect on quenching of perylene fluorescence by halonaphthalenes, J. Phys. Chem. 93: 466–468.Google Scholar
  114. 114.
    Encinas, M. V., Rubio, M. A., and Lissi, E., 1983, Quenching and photobleaching of excited polycyclic aromatic hydrocarbons by carbon tetrachloride and chloroform in micellar systems, Photochem. Photobiol. 37: 125–130.Google Scholar
  115. 115.
    Behera, P. K., Mukherjee, T, and Mishra, A. K., 1995, Quenching of substituted naphthalenes fluorescence by chloromethanes, J. Lumin. 65: 137–142.Google Scholar
  116. 116.
    Behera, P. K., and Mishra, A. K., 1993, Static and dynamic model for 1-naphthol fluorescence quenching by carbon tetrachloride in dioxane-acetonitrile mixtures, J. Photochem. Photobiol., A: Chem. 71: 115–118.Google Scholar
  117. 117.
    Behera, P. K., Mukherjee, T., and Mishra, A. K., 1995, Simultaneous presence of static and dynamic component in the fluorescence quenching for substituted naphthalene-CC14 system, J Lumin. 65: 131–136.Google Scholar
  118. 118.
    Zhang, J., Roek, D. R, Chateauneuf, J. E., and Brennecke, J. F., 1997, A steady-state and time-resolved fluorescence study of quenching reactions of anthracene and 1,2-benzanthracene by carbon tetrabromide and bromoethane in supercritical carbon dioxide, J. Amer. Chem. Soc. 119: 9980–9991.Google Scholar
  119. 119.
    Tucker, S. A., Cretella, L. E., Waris, R., Street, K. W., Acree, W. E., and Fetzer, J. C., 1990, Polycyclic aromatic hydrocarbon solute probes. Part VI: Effect of dissolved oxygen and halogenated sol-vents on the emission spectra of select probe molecules, Appl. Spectrosc. 44: 269–273.Google Scholar
  120. 120.
    Wiczk, W. M., and Latowski, T., 1992, The effect of temperature on the fluorescence quenching of perylene by tetrachloromethane in mixtures with cyclohexane and benzene, Z Naturforsch. A 47: 533–535.Google Scholar
  121. 121.
    Wiczk, W. M., and Latowski, T., 1986, Photophysical and photochemical studies of polycyclic aromatic hydrocarbons in solutions containing tetrachloromethane. I. Fluorescence quenching of anthracene by tetrachloromethane and its complexes with benzene, p-xylene and mesitylene, Z Naturforsch. A 41: 761–766.Google Scholar
  122. 122.
    Goswami, D., Sarpal, R. S., and Dogra, S. K., 1991, Fluorescence quenching of few aromatic amines by chlorinated methanes, Bull. Chem. Soc. Jpn. 64: 3137–3141.Google Scholar
  123. 123.
    Takahashi, T., Kikuchi, K., and Kokubun, H., 1980, Quenching of excited 2,5-diphenyloxazole by CCI4, J. Photochem. 14: 67–76.Google Scholar
  124. 124.
    Alford, P. C., Cureton, C. G., Lampert, R. A., and Phillips, D., 1983, Fluorescence quenching of tertiary amines by halocarbons, Chem. Phys. 76: 103–109.Google Scholar
  125. 125.
    Khwaja, H. A., Semeluk, G. P., and Unger, I., 1984, Quenching of the singlet and triplet state of benzene in condensed phase, Can. J. Chem. 62: 1487–1491.Google Scholar
  126. 126.
    Washington, K., Sarasua, M. M., Koehler, L. S., Koehler, K. A., Schultz, J. A., Pedersen, L. G., and Hiskey, R. G., 1984, Utilization of heavy-atom effect quenching of pyrene fluorescence to determine the intramembrane distribution of halothane, Photochem. Photobiol. 40: 693–701.Google Scholar
  127. 127.
    Lopez, M. M., and Kosk-Kosicka, D., 1998, Spectroscopic analysis of halothane binding to the plasma membrane Cat+-ATPase, Biophys. J. 74: 974–980.Google Scholar
  128. 128.
    Cavatorta, R, Favilla, R., and Mazzini, A., 1979, Fluorescence quenching of tryptophan and related compounds by hydrogen peroxide, Biochim. Biophys. Acta 578: 541–546.Google Scholar
  129. 129.
    Vos, R., and Engelborghs, Y., 1994, A fluorescence study of tryptophan—histidine interactions in the peptide alantin and in solution, Photochem. Photobiol. 60: 24–32.Google Scholar
  130. 130.
    Mae, M., Wach, A., and Najbar, J., 1991, Solvent effects on the fluorescence quenching of anthracene by iodide ions, Chem. Phys. Lett. 176: 167–172.Google Scholar
  131. 131.
    Blatt, E., Ghiggino, K. P., and Sawyer, W. H., 1982, Fluorescence depolarization studies of n-(9-anthroyloxy) fatty acids in cetyltrimethylammonium bromide micelles, J. Phys. Chem. 86: 4461–4464.Google Scholar
  132. 132.
    Fraiji, L. K., Hayes, D. M., and Werner, T. C., 1992, Static and dynamic fluorescence quenching experiments for the physical chemistry laboratory, J. Chem. Educ. 69: 424–428.Google Scholar
  133. 133.
    Zhu, C., Bright, E V., and Hieftje, G. M., 1990, Simultaneous determination of Br and I- with a multiple fiber-optic fluorescence sensor, Appl. Spectrosc. 44: 59–64.Google Scholar
  134. 134.
    Lakowicz, J. R., and Anderson, C. J., 1980, Permeability of lipid bilayers to methylmercuric chloride: Quantification by fluorescence quenching of a carbazole-labeled phospholipid, Chem.-Biol. Interact. 30: 309–323.Google Scholar
  135. 135.
    Boudou, A., Desmazes, J. P., and Georgescauld, D., 1982, Fluorescence quenching study of mercury compounds and liposome interactions: Effect of charged lipid and pH, Ecotoxicol. Environ. Saf. 6: 379–387.Google Scholar
  136. 136.
    Holmes, A. S., Suhling, K., and Birch, D. J. S., 1993, Fluorescence quenching by metal ions in lipid bilayers, Biophys. Chem. 48: 193–204.Google Scholar
  137. 137.
    Birch, D. J. S., Suhling, K., Holmes, A. S., Salthammer, T., and Imhof, R. E., 1993, Metal ion quenching of perylene fluorescence in lipid bilayers, Pure Appl. Chem. 65: 1687–1692.Google Scholar
  138. 138.
    Sawicki, E., Stanley, T. W., and Elbert, W. C., 1964, Quenchofluorometric analysis for fluoranthenic hydrocarbons in the presence of other types of aromatic hydrocarbon, Talanta 11: 1433–1441.Google Scholar
  139. 139.
    Dreeskamp, H., Koch, E., and Zander, M., 1975, On the fluorescence quenching of polycyclic aromatic hydrocarbons by nitromethane, Z Naturforsch. A 30: 1311–1314.Google Scholar
  140. 140.
    Pandey, S., Fletcher, K. A., Powell, J. R., McHale, M. E. R., Kauppila, A-S. M., Acree, W. E., Fetzer, J. C., Dai, W., and Harvey, R. G., 1997, Spectrochemical investigations of fluorescence quenching agents. Part 5. Effect of surfactants on the ability of nitromethane to selectively quench fluorescence emission of alternant PAHs, Spectrochim. Acta, Part A 53: 165–172.Google Scholar
  141. 141.
    Pandey, S., Acree, W. E., Cho, B. P., and Fetzer, J. C., 1997, Spectroscopic properties of polycyclic aromatic compounds. Part 6. The nitromethane selective quenching rule visited in aqueous micellar zwitterionic surfactant solvent media, Talanta 44: 413–421.Google Scholar
  142. 142.
    Acree, W. E., Pandey, S., and Tucker, S. A., 1997, Solvent-modulated fluorescence behavior and photophysical properties of poly-cyclic aromatic hydrocarbons dissolved in fluid solution, Curr. Top. Solution Chem. 2: 1–27.Google Scholar
  143. 143.
    Tucker, S. A., Acree, W. E., Tanga, M. J., Tokita, S., Hiruta, K., and Langhals, H., 1992, Spectroscopic properties of polycyclic aromatic compounds: Examination of nitromethane as a selective fluorescence quenching agent for alternant polycyclic aromatic nitrogen hetero-atom derivatives, Appl. Spectrosc. 46: 229–235.Google Scholar
  144. 144.
    Tucker, S. A., Acree, W. E., and Upton, C., 1993, Polycyclic aromatic nitrogen heterocycles. Part V: Fluorescence emission behavior of select tetraaza-and diazaarenes in nonelectrolyte solvents, Appl. Spectrosc. 47: 201–206.Google Scholar
  145. 145.
    Green, J. A., Singer, L. A., and Parks, J. H., 1973, Fluorescence quenching by the stable free radical di-t-butylnitroxide, J. Chem. Phys. 58: 2690–2695.Google Scholar
  146. 146.
    Bieri, V. G., and Wallach, D. F. H., 1975, Fluorescence quenching in Iecithin:cholesterol liposomes by paramagnetic lipid analogues: Introduction of new probe approach, Biochim. Biophys. Acta 389: 413–427.Google Scholar
  147. 147.
    Encinas, M. V., Lissi, E. A., and Alvarez, J., 1994, Fluorescence quenching of pyrene derivatives by nitroxides microheterogeneous systems, Photochem. Photobiol. 59: 30–34.Google Scholar
  148. 148.
    Matko, J., Ohki, K., and Edidin, M., 1992, Luminescence quenching by nitroxide spin labels in aqueous solution: Studies on the mechanism of quenching, Biochemistry 31: 703–711.Google Scholar
  149. 149.
    Jones, P. E, and Siegel, S., 1971, Quenching of naphthalene luminescence by oxygen and nitric oxide, J. Chem. Phys. 54: 3360–3366.Google Scholar
  150. 150.
    Harper, J., and Sailor, M. J., 1996, Detection of nitric oxide and nitrogen dioxide with photoluminescent porous silicon, Anal. Chem. 68: 3713–3717.Google Scholar
  151. 151.
    Denicola, A., Souza, J. M., Radi, R., and Lissi, E., 1996, Nitric oxide diffusion in membranes determined by fluorescence quenching, Arch. Biochem. Biophys. 328: 208–212.Google Scholar
  152. 152.
    Ware, W. R., Holmes, J. D., and Arnold, D. R., 1974, Exciplex photophysics. II. Fluorescence quenching of substituted anthracenes by substituted 1,1-diphenylethylenes, J. Am. Chem. Soc. 96: 7861–7864.Google Scholar
  153. 153.
    Labianca, D. A., Taylor, G. N., and Hammond, G. S., 1972, Struc-ture—reactivity factors in the quenching of fluorescence from naphthalenes by conjugated dienes, J. Am. Chem. Soc. 94: 3679–3683.Google Scholar
  154. 154.
    Encinas, M. V., Guzman, E., and Lissi, E. A., 1983, Intramicellar aromatic hydrocarbon fluorescence quenching by olefins, J. Phys. Chem. 87: 4770–4772.Google Scholar
  155. 155.
    Abuin, E. B., and Lissi, E. A., 1993, Quenching rate constants in aqueous solution: Influence of the hydrophobic effect, J. Photochem. Photobiol. 71: 263–267.Google Scholar
  156. 156.
    Chang, S. L. P., and Schuster, D. I., 1987, Fluorescence quenching of 9,10-dicyanoanthracene by dienes and alkenes, J. Phys. Chem. 91: 3644–3649.Google Scholar
  157. 157.
    Eriksen, J., and Foote, C. S., 1978, Electron-transfer fluorescence quenching and exciplexes of cyano-substituted anthracenes, J. Phys. Chem. 82: 2659–2662.Google Scholar
  158. 158.
    Fischkoff, S., and Vanderkooi, J. M., 1975, Oxygen diffusion in biological and artificial membranes determined by the fluoro-chrome pyrene, J. Gen. Phys. 65: 663–676.Google Scholar
  159. 159.
    Jameson, D. M., Gratton, E., Weber, G., and Alpert, B., 1984, Oxygen distribution and migration within MBDES FE and HBDES FE Biophys. J. 45: 795–803.Google Scholar
  160. 160.
    Subczynski, W. K., Hyde, J. S., and Kusumi, A., 1989, Oxygen permeability of phosphatidylcholine-cholesterol membranes, Proc. Natl. Acad. Sci. U.S.A. 86: 4474–4478.Google Scholar
  161. 161.
    Dumas, D., Muller, S., Gouin, F., Baros, F., Viriot, M.-L., and Stoltz, J.-F, 1997, Membrane fluidity and oxygen diffusion in cholesterol-enriched erythrocyte membrane, Arch. Biochem. Biophys. 341: 34–39.Google Scholar
  162. 162.
    Camyshan, S. V., Gritsan, N. P., Korolev, V. V., and Bazhin, N. M., 1990, Quenching of the luminescence of organic compounds by oxygen in glassy matrices, Chem. Phys. 142: 59–68.Google Scholar
  163. 163.
    Kikuchi, K., Sato, C., Watabe, M., Ikeda, H., Takahashi, Y., and Miyashi, T., 1993, New aspects on fluorescence quenching by molecular oxygen, J. Am. Chem. Soc. 115: 5180–5184.Google Scholar
  164. 164.
    Vaughan, W. M., and Weber, G., 1970, Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment, Biochemistry 9: 464–473.Google Scholar
  165. 165.
    Abuin, E. B., and Lissi, E. A., 1991, Diffusion and concentration of oxygen in microheterogeneous systems. Evaluation from luminescence quenching data, Prog. React. Kinet. 16: 1–33.Google Scholar
  166. 166.
    Parasassi, T., and Gratton, E., 1992, Packing of phospholipid vesicles studied by oxygen quenching of laurdan fluorescence, J. Fluoresc. 2: 167–174.Google Scholar
  167. 167.
    Encinas, M. V., and Lissi, E. A., 1983, Intramicellar quenching of 2,3-dimethylnaphthalene fluorescence by peroxides and hydroperoxides, Photochem. Photobiol. 37: 251–255.Google Scholar
  168. 168.
    Holmes, L. G., and Robbins, F. M., 1974, Quenching of tryptophyl fluorescence in proteins by N’-methylnicotinamide chloride, Photochem. Photobiol. 19: 361–366.Google Scholar
  169. 169.
    Martin, M. M., and Ware, W. R., 1978, Fluorescence quenching of carbazole by pyridine and substituted pyridines. Radiationless processes in the carbazole-amine hydrogen bonded complex, J. Phys. Chem. 82: 2770–2776.Google Scholar
  170. 170.
    Seely, G. R., 1978, The energetics of electron-transfer reactions of chlorophyll and other compounds, Photochem. Photobiol. 27: 639–654.Google Scholar
  171. 171.
    Schroeder, J., and Wilkinson, E, 1979, Quenching of triplet states of aromatic hydrocarbons by quinones due to favourable charge-transfer interactions, J. Chem. Soc., Faraday Trans. 275: 896–904.Google Scholar
  172. 172.
    Dreeskamp, H., Laufer, A., and Zander, M., 1983, Löschung der perylen-fluoreszenz durch Ag+-ionen, Z Naturforsch. A 38: 698–700.Google Scholar
  173. 173.
    Badley, R. A., 1975, The location of protein in serum lipoproteins: A fluorescence quenching study, Biochim. Biophy. Acta 379: 517–528.Google Scholar
  174. 174.
    Eftink, M. R., and Ghiron, C. A., 1984, Indole fluorescence quenching studies on proteins and model systems: Use of the inefficient quencher succinimide, Biochemistry 23: 3891–3899.Google Scholar
  175. 175.
    Moore, H.-P. H., and Raftery, M. A., 1980, Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance, Proc. Natl. Acad. Sci. U.S.A. 77: 4509–4513.Google Scholar
  176. 176.
    Mac, M., Najbar, J., Phillips, D., and Smith, T. A., 1992, Solvent dielectric relaxation properties and the external heavy atom effect in the time-resolved fluorescence quenching of anthracene by potassium iodide and potassium thiocyanate in methanol and ethanol, J. Chem. Soc., Faraday Trans. 88: 3001–3005.Google Scholar
  177. 177.
    Carrigan, S., Doucette, S., Jones, C., Marzzacco, C. J., and Halpern, A. M., 1996, The fluorescence quenching of 5,6-benzoquinoline and its conjugate acid by Cl-, BC, SCN- and I- ions, J. Photochem. Photobiol., A: Chem. 99: 29–35.Google Scholar
  178. 178.
    Horrochs, A. R., Kearvell, A., Tickle, K., and Wilkinson, F, 1966, Mechanism of fluorescence quenching in solution II. Quenching by xenon and intersystem crossing efficiencies, Trans. Faraday Soc. 62: 3393–3399.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations