Time-Domain Lifetime Measurements

  • Joseph R. Lakowicz

Abstract

Time-resolved measurements are widely used in fluorescence spectroscopy, particularly for studies of biological macromolecules. This is because time-resolved data frequently contain more information than is available from the steady-state data. For instance, consider a protein which contains two tryptophan residues, each with a distinct lifetime. Because of spectral overlap of the absorption and emission, it is not usually possible to resolve the emission from the two residues. However, the time-resolved data may reveal two decay times, which can be used to resolve the emission spectra and relative intensities of the two tryptophan residues. Then one can question how each of the tryptophan residues is affected by the interactions of the protein with its substrate or other macromolecules. Is one of the tryptophan residues close to the binding site? Is a tryptophan residue in a distal domain affected by substrate binding to another domain? Such questions can be answered if one measures the decay times associated with each tryptophan residue.

Keywords

Decay Time Fluorescence Decay Lifetime Measurement Anthranilic Acid Streak Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bevington, P. R., 1969, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.Google Scholar
  2. 2.
    Lakowicz, J. R., 1996, Fluorescence spectroscopy of biomolecules, in Encyclopedia of Molecular Biology and Biotechnology, R. A. Meyers (ed.), VCH Publishers, Weinhein, Germany, pp. 294–306.Google Scholar
  3. 3.
    Grinvald, A., and Steinberg, I. Z., 1974, On the analysis of fluorescence decay kinetics by the method of least-squares, Anal. Biochem. 59: 583–593.Google Scholar
  4. 4.
    Demas, J. N., 1983, Excited State Lifetime Measurements, Academic Press, New York.Google Scholar
  5. 5.
    Johnson, M. L., 1985, The analysis of ligand binding data with experimental uncertainties in the independent variables, Anal. Biochem. 148: 471–478.Google Scholar
  6. 6.
    Bard, J., 1974, Nonlinear Parameter Estimation, Academic Press, New York.Google Scholar
  7. 7.
    Johnson, M. L., 1983, Evaluation and propagation of confidence intervals in nonlinear, asymmetrical variance spaces: Analysis of ligand binding data, Biophys. J. 44: 101–106.Google Scholar
  8. 8.
    O’Connor, D. V., and Phillips, D., 1984, Time-Correlated Single Photon Counting, Academic Press, New York.Google Scholar
  9. 9.
    Birch, D. J. S., and Imhof, R. E., 1991, Time-domain fluorescence spectroscopy using time-correlated single-photon counting, in Topics in Fluorescence Spectroscopy, Volume I, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1–95.Google Scholar
  10. 10.
    Ware, W. R., 1971, Transient luminescence measurements, in Creation and Detection of the Excited State, Vol. 1 A, A. A. Lamola (ed.), Marcel Dekker, New York, pp. 213–302.Google Scholar
  11. 11.
    Malak, H., unpublished observations.Google Scholar
  12. 12.
    Badea, M. G., and Brand, L., 1971, Time-resolved fluorescence measurements, Methods in Enzymol. 61: 378–425.Google Scholar
  13. 13.
    Svelto, O., 1998, Principles of Lasers, 4th edition, Translated by David C. Hanna. Plenum Press, New York.Google Scholar
  14. 14.
    Yariv, A., 1989, Quantum Electronics, 3rd edition, John Wiley Sons, New York.Google Scholar
  15. 15.
    Iga, K., 1994, Fundamentals of Laser Optics, Plenum Press, New York.Google Scholar
  16. 16.
    Small, E. W., 1991, Laser sources and microchannel plate detectors for pulse fluorometry, in Topics in Fluorescence Spectroscopy, Volume 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 97–182.Google Scholar
  17. 17.
    Wilson, J., and Hawkes, J. F. B., 1983, Optoelectronics—An Introduction, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  18. 18.
    Berg, N. J., and Lee, J. N. (eds.), 1983, Acousto-Optic Signal Processing, Marcel Dekker, New York.Google Scholar
  19. 19.
    Visser, A. J. W. G., and Van Hoek, A., 1979, The measurement of subnanosecond fluorescence decay of flavins using time-correlated photon counting and a mode-locked Ar Ion laser, J. Biochem. Biophys. Methods. 1: 195–208.Google Scholar
  20. 20.
    Spears, K. G., Cramer, L. E., and Hoffland, L. D., 1978, Subnanosecond time-correlated photon counting with tunable lasers, Rev. Sci. Instrum. 49: 255–262.Google Scholar
  21. 21.
    Lytle, E., and Kelsey, M. S., 1974, Cavity-dumped argon-ion laser as an excitable source on time-resolved fluorimetry, Anal. Chem. 46: 855–860.Google Scholar
  22. 22.
    Wild, U. P., Holzwarth, A. R., and Good, H. P., 1977, Measurement and analysis of fluorescence decay curves, Rev. Sci. Instrum. 48: 1621–1627.Google Scholar
  23. 23.
    Turko, B. T., Nairn, J. A., and Sauer, K., 1983, Single photon timing system for picosecond fluorescence lifetime measurements, Rev. Sci. Instrum. 54: 118–120.Google Scholar
  24. 24.
    Alfano, A. J., Fong, F. K., and Lytle, F. E., 1983, High repetition rate subnanosecond gated photon counting, Rev. Sci. Instrum. 54: 967–972.Google Scholar
  25. 25.
    Kinoshita, S., Ohta, H., and Kushida, T., 1981, Subnanosecond fluorescence lifetime measuring system using single photon counting method with mode-locked laser excitation, Rev. Sci. Instrum. 52: 572–575.Google Scholar
  26. 26.
    Koester, V. J., and Dowben, R. M., 1978, Subnanosecond single photon counting fluorescence spectroscopy using synchronously pumped tunable dye laser excitation, Rev. Sci. Instrum. 49: 1186–1191.Google Scholar
  27. 27.
    Zimmerman, H. E., Penn, J. H., and Carpenter, C. W., 1982, Evaluation of single-photon counting measurements of excited-state lifetimes, Proc. Natl. Acad. Sci. U.S.A. 79: 2128–2132.Google Scholar
  28. 28.
    van Hoek, A., Vervoort, J., and Visser, A. J. W. G., 1983, A subnanosecond resolving spectrofluorimeter for the analysis of protein fluorescence kinetics, J. Biochem. Biophys. Methods 7: 243–254.Google Scholar
  29. 29.
    Small, E. W., Libertini, L. J., and Isenberg, I., 1984, Construction and tuning of a monophoton decay fluorometer with high-resolution capabilities, Rev. Sci. Instrum. 55: 879–885.Google Scholar
  30. 30.
    Visser, A. J. W. G., and van Hoek, A., 1981, The fluorescence decay of reduced nicotinamides in aqueous solution after excitation with a UV-mode locked Ar Ion laser, Photochem. Photobiol. 33: 35–40.Google Scholar
  31. 31.
    Libertini, L. J., and Small, E. W., 1987, On the choice of laser dyes for use in exciting tyrosine fluorescence decays, Anal. Biochem. 163: 500–505.Google Scholar
  32. 32.
    Laws, W. R., and Sutherland, J. C., 1986, The time-resolved photon-counting fluorometer at the national synchrotron light source, Photochem. Photobiol. 44: 343–348.Google Scholar
  33. 33.
    Munro, I. H., and Martin, M. M., 1991, Time-resolved fluorescence spectroscopy using synchrotron radiation, in Topics in Fluorescence Spectroscopy, Volume I, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 261–291.Google Scholar
  34. 34.
    Munro, I. H., and Schwentner, N., 1983, Time resolved spectroscopy using synchrotron radiation, Nucl. Instrum. Methods 208: 819–834.Google Scholar
  35. 35.
    Lopez-Delgado, R., 1978, Comments on the application of synchrotron radiation to time-resolved spectrofluorometry, Nucl. Instrum. Methods 152: 247–253.Google Scholar
  36. 36.
    Rehn, V., 1980, Time-resolved spectroscopy in synchrotron radiation, Nucl. Instrum. Methods 177: 193–205.Google Scholar
  37. 37.
    van Der Oord, C. J. R., Gerritsen, H. G, Rommerts, F. F. G., Shaw, D. A., Munro, I. H., and Levine, Y. K., 1995, Micro-volume time-resolved fluorescence spectroscopy using a confocal synchrotron radiation microscope, Appl. Spectrosc. 49: 1469–1473.Google Scholar
  38. 38.
    Malmberg, J. H., 1957, Millimicrosecond duration of light source, Rev. Sci. Instrum. 28: 1027–1029.Google Scholar
  39. 39.
    Bennett, R. G., 1960, Instrument to measure fluorescence lifetimes in the millimicrosecond region, Rev. Sci. Instrum. 31: 1275–1279.Google Scholar
  40. 40.
    Yguerabide, J., 1965, Generation and detection of subnanosecond light pulses: Application to luminescence studies, Rev. Sci. Instrum. 36: 1734–1742.Google Scholar
  41. 41.
    Birch, D. J. S., and Imhof, R. E., 1977, A single photon counting fluorescence decay-time spectrometer, J. Phys. E: Sci. Instrum. 10: 1044–1049.Google Scholar
  42. 42.
    Lewis, C., Ware, W. R., Doemeny, L. J., and Nemzek, T. L., 1973, The measurement of short lived fluorescence decay using the single photon counting method, Rev. Sci. Instrum. 44: 107–114.Google Scholar
  43. 43.
    Leskovar, B., Lo, C. C., Hartig, P. R., and Sauer, K., 1976, Photon counting system for subnanosecond fluorescence lifetime measurements, Rev. Sci. Instrum. 47: 1113–1121.Google Scholar
  44. 44.
    Bollinger, L. M., and Thomas, G. E., 1961, Measurement of the time dependence of scintillation intensity by a delayed-coincidence method, Rev. Sci. Instrum. 32: 1044–1050.Google Scholar
  45. 45.
    Hazan, G., Grinvald, A., Maytal, M., and Steinberg, I. Z., 1974, An improvement of nanosecond fluorimeters to overcome drift problems, Rev. Sci. Instrum. 45: 1602–1604.Google Scholar
  46. 46.
    Dreeskamp, H., Salthammer, T., and Laufer, A. G. E., 1989, Time-correlated single-photon counting with alternate recording of excitation and emission, J. Lumin. 44: 161–165.Google Scholar
  47. 47.
    Birch, D. J. S., and Imhof, R. E., 1981, Coaxial nanosecond flash-lamp, Rev. Sci. Instrum. 52: 1206–1212.Google Scholar
  48. 48.
    Birch, D. J. S., Hungerford, G., and Imhof, R. E., 1991, Near-infrared spark source excitation for fluorescence lifetime measurements, Rev. Sci. Instrum. 62: 2405–2408.Google Scholar
  49. 49.
    Birch, D. J. S., Hungerford, G., Nadolski, B., Imhof, R. E., and Dutch, A., 1988, Time-correlated single-photon counting fluorescence decay studies at 930 nm using spark source excitation, J. Phys. E: Sci. Instrum. 21: 857–862.Google Scholar
  50. 50.
    Miller, K. J., and Lytle, F. E., 1993, Capillary zone electrophoresis with time-resolved fluorescence detection using a diode-pumped solid-state laser, J. Chwmatogr. 648: 245–250.Google Scholar
  51. 51.
    Picosecond Fluorescence Lifetime Measurement System, Hamamatsu Literature, Catalog No. SSCS1018E02, Nov/91NB.Google Scholar
  52. 52.
    Thompson, R. B., Frisoli, J. K., and Lakowicz, J. R., 1992, Phase fluorometry using a continuously modulated laser diode, Anal. Chem. 64: 2075–2078.Google Scholar
  53. 53.
    Berndt, K. W., Gryczynski, I., and Lakowicz, J. R., 1990, Phase-modulation fluorometry using a frequency-doubled pulsed laser diode light source, Rev. Sci. Instrum. 61: 1816–1820.Google Scholar
  54. 54.
    Gedcke, D. A., and McDonald, W. J., 1967, A constant fraction of pulse height trigger for optimum time resolution, Nucl. Instrum. Methods 55: 377–380.Google Scholar
  55. 55.
    Gedcke, D. A., and McDonald, W. J., 1966, Design of the constant fraction of pulse height trigger for optimum time resolution, Nucl. Instrum. Methods 58: 253–260.Google Scholar
  56. 56.
    Arbel, A., Klein, I., and Yarom, A., 1974, Snap-off constant fraction timing discriminators, IEEE Trans. Nucl. Sci. NS-21: 3–8.Google Scholar
  57. 57.
    Cova, S., Ghioni, M., Zappa, F., and Lacaita, A., 1993, Constant-fraction circuits for picosecond photon timing with microchannel plate photomultipliers, Rev. Sci. Instrum. 64: 118–124.Google Scholar
  58. 58.
    Cova, S., Ripamonti, G., and Lacaita, A., 1990, New double constant-fraction trigger circuit for locking on laser pulse trains up to 100 MHz, Rev. Sci. Instrum. 61: 1004–1009.Google Scholar
  59. 59.
    Cova, S., and Ripamonti, G., 1990, Improving the performance of ultrafast microchannel plate photomultipliers in time-correlated photon counting by pulse pre-shaping, Rev. Sci. Instrum. 61: 1072–1075.Google Scholar
  60. 60.
    Haugen, G. R., Wallin, B. W., and Lytle, F. E., 1979, Optimization of data-acquisition rates in time-correlated single-photon fluorimetry, Rev. Sci. Instrum. 50: 64–72.Google Scholar
  61. 61.
    Bowman, L. E., Berglund, K. A., and Nocera, D. G., 1993, A single photon timing instrument that covers a broad temporal range in the reversed timing configuration, Rev. Sci. Instrum. 64: 338–341.Google Scholar
  62. 62.
    Baumier, W., Schmalzl, A. X., G601, G., and Penzkofer, A., 1992, Fluorescence decay studies applying a cw femtosecond dye laser pumped ungated inverse time-correlated single photon counting system, Meas. Sci. Technol. 3: 384–393.Google Scholar
  63. 63.
    Harris, C. M., and Selinger, B. K., 1979, Single-photon decay spectroscopy. II The pileupproblem, Aust. J. Chem. 32: 2111–2129.Google Scholar
  64. 64.
    Williamson, J. A., Kendall-Tobias, M. W., Buhl, M., and Seibert, M., 1988, Statistical evaluation of dead time effects and pulse pileup in fast photon counting. Introduction of the sequential model, Anal Chem. 60: 2198–2203.Google Scholar
  65. 65.
    Koyama, K., and Fatlowitz, D., 1987, Application of MCP-PMTs to time correlated single photon counting and related procedures, Hamamatsu Technical Information, No. ET-03, pp. 1–18.Google Scholar
  66. 66.
    Howorth, J. R., Ferguson, I., and Wilcox, D., 1995, Developments in microchannel plate photomultipliers, Proc. SPIE2388: 356–362.Google Scholar
  67. 67.
    Beechem, J. M., 1992, Multi-emission wavelength picosecond time-resolved fluorescence decay data obtained on the millisecond scale: Application to protein:DNA interactions and protein folding reactions, Proc. SPIE 1640: 676–680.Google Scholar
  68. 68.
    Birch, D. J. S., Holmes, A. S., Imhof, R. E., Nadolski, B. Z., and Cooper, J. C., 1988, Multiplexed time-correlated single photon counting, Proc. SPIE 909: 8–14.Google Scholar
  69. 69.
    Birch, D. J. S., McLoskey, D., Sanderson, A., Suhling, K., and Holmes, A. S., 1994, Multiplexed time-correlated single-photon counting, J. Fluoresc. 4 (1): 91–102.Google Scholar
  70. 70.
    McLoskey, D., Birch, D. J. S., Sanderson, A., Suhling, K., Welch, E., and Hicks, P. J., 1996, Multiplexed single-photon counting. I. A time-correlated fluorescence lifetime camera, Rev. Sci. Instrum. 67: 2228–2237.Google Scholar
  71. 71.
    Suhling, K., McLoskey, D., and Birch, D. J. S., 1996, Multiplexed single-photon counting. II. The statistical theory of time-correlated measurements, Rev. Sci. Instrum. 67: 2238–2246.Google Scholar
  72. 72.
    Erdmann, R., Becker, W., Ortmann, U., and Enderlein, J., 1995, Simultaneous detection of time-resolved emission spectra using a multianode-PMT and new TCSPC-electronics with 5 MHz count rate, Proc. SPIE 2388: 330–334.Google Scholar
  73. 73.
    Candy, B. H., 1985, Photomultiplier characteristics and practice relevant to photon counting, Rev. Sci. Instrum. 56: 183–193.Google Scholar
  74. 74.
    Hungerford, G., and Birch, D. J. S., 1996, Single-photon timing detectors for fluorescence lifetime spectroscopy, Meas. Sci. Technol. 7: 121–135.Google Scholar
  75. 75.
    Leskovar, B., 1977, Microchannel plates, Phys. Today 1977: 42–49.Google Scholar
  76. 76.
    Boutot, J. P., Delmotte, J. C., Mieh6, J. A., and Sipp, B., 1977, Impulse response of curved microchannel plate photomultipliers, Rev. Sci. Instrum. 48: 1405–1407.Google Scholar
  77. 77.
    Timothy, J. G., and Bybee, R. L., 1977, Preliminary results with microchannel array plates employing curved microchannels to inhibit ion feedback, Rev. Sci. Instrum. 48: 292–299.Google Scholar
  78. 78.
    Lo, C. C., and Leskovar, B., 1981, Performance studies of high gain photomultiplier having z-configuration of microchannel plates, IEEE Trans. Nucl. Sci. NS-28: 698–704.Google Scholar
  79. 79.
    I to, M., Kume, H., and Oba, K., 1984, Computer analysis of the timing properties in micro channel plate photomultiplier tubes, IEEE Trans. Nucl. Sci. NS-31: 408–412.Google Scholar
  80. 80.
    Bebelaar, D., 1986, Time response of various types of photomultipliers and its wavelength dependence in time-correlated single photon counting with an ultimate resolution of 47 ps FWHM, Rev. Sci. Instrum 57: 1116–1125.Google Scholar
  81. 81.
    Yamazaki, I., Tamai, N., Kume, H., Tsuchiya, H., and Oba, K., 1985, MicroChannel plate photomultiplier applicability to the time-correlated photon-counting method, Rev. Sci. Instrum. 56: 1187–1194.Google Scholar
  82. 82.
    Uyttenhove, J., Demuynck, J., and Deruytter, A., 1978, Application of a microchannel plate photomultiplier in subnanosecond lifetime measurements, IEEE Trans. Nucl. Sci. NS-25:566–567.Google Scholar
  83. 83.
    Murao, T., Yamazaki, I., Shindo, Y., and Yoshihara, K., 1982, A subnanosecond time-resolved spectrophotometric system by using synchronously pumped, mode-locked dye laser, J. Spectrosc. Soc. Jpn. 1982: 96–103.Google Scholar
  84. 84.
    Murao, T., Yamazaki, I., and Yoshihara, K., 1982, Applicability of a microchannel plate photomultiplier to the time-correlated photon counting technique, Appl. Opt. 21: 2297–2298.Google Scholar
  85. 85.
    Boens, N., Tamai, N., Yamazaki, I., and Yamazaki, T., 1990, Picosecond single photon timing measurements with a proximity type microchannel plate photomultiplier and global analysis with reference convolution, Photochem. Photobiol. 52: 911–917.Google Scholar
  86. 86.
    Beck, G., 1976, Operation of a 1P28 photomultiplier with subnanosecond response time, Rev. Sci. Instrum. 47: 537–541.Google Scholar
  87. 87.
    Kinoshita, S., and Kushida, T., 1982, High-performance, time-correlated single photon counting apparatus using a side-on type photomultiplier, Rev. Sci. Instrum. 53: 469–472.Google Scholar
  88. 88.
    Canonica, S., Forrer, J., and Wild, U. P., 1985, Improved timing resolution using small side-on photomultipliers in single photon counting, Rev. Sci. Instrum. 56: 1754–1758.Google Scholar
  89. 89.
    Ware, W. R., Pratinidhi, M., and Bauer, R. K., 1983, Performance characteristics of a small side-window photomultiplier in laser single-photon fluorescence decay measurements, Rev. Sci. Instrum. 54: 1148–1156.Google Scholar
  90. 90.
    Cova, S., Longoni, A., Andreoni, A., and Cubeddu, R., 1983, A semiconductor detector for measuring ultraweak fluorescence decays with 70ps FWHM resolution, IEEE J. Quantum Electron. QE-19: 630–634.Google Scholar
  91. 91.
    Buller, G. S., Massa, J. S., and Walker, A. C., 1992, All solid-state microscope-based system for picosecond time-resolved photolu-minescence measurements on II-VI semiconductors, Rev. Sci. Instrum. 63: 2994–2998.Google Scholar
  92. 92.
    Louis, T. A., Ripamonti, G., and Lacaita, A., 1990, Photolumines-cence lifetime microscope spectrometer based on time-correlated single-photon counting with an avalanche diode detector, Rev. Sci. Instrum. 61: 11–22.Google Scholar
  93. 93.
    Cova, S., Ripamonti, G., and Lacaita, A., 1987, Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps, Nucl. Instrum. Methods Phys. Res. A253: 482–487.Google Scholar
  94. 94.
    Cova, S., Lacaita, A., Ghioni, M., Ripamonti, G., and Louis, T. A., 1989,20-ps timing resolution with single-photon avalanche diodes, Rev. Sci. Instrum. 60:1104–1110.Google Scholar
  95. 95.
    Cova, S., Longoni, A., and Andreoni, A., 1981, Towards picosecond resolution with single-photon avalanche diodes, Rev. Sci. Instrum. 52: 408–412.Google Scholar
  96. 96.
    Louis, T., Schatz, G. H., Klein-Bolting, P., Holzwarth, A. R., Ripamonti, G., and Cova, S., 1988, Performance comparison of a single-photon avalanche diode with a microchannel plate photo-multiplier in time-correlated single-photon counting, Rev. Sci. Instrum. 59: 1148–1152.Google Scholar
  97. 97.
    Lacaita, A., Cova, S., and Ghioni, M., 1988, Four-hundred picosecond single-photon timing with commerically available avalanche photodiodes, Rev. Sci. Instrum. 59: 1115–1121.Google Scholar
  98. 98.
    Wahl, P., Auchet, J. C., and Donzel, B., 1974, The wavelength dependence of the response of a pulse fluorometer using the single photoelectron counting method, Rev. Sci. Instrum. 45: 28–32.Google Scholar
  99. 99.
    Sipp, B., Miehe, J. A., and Lopez-Delgado, R., 1976, Wavelength dependence of the time resolution of high-speed photomultipliers used in single-photon timing experiments, Opt. Commun. 16: 202–204.Google Scholar
  100. 100.
    Rayner, D. M., McKinnon, A. F., and Szabo, A. G., 1978, Confidence in fluorescence lifetime determinations: A ratio correction for the photomultiplier time response variation with wavelength, Can. J. Chem. 54: 3246–3259.Google Scholar
  101. 101.
    Thompson, R. B., and Gratton, E., 1988, Phase fluorometric method for determination of standard lifetimes, Anal. Chem. 60: 670–674.Google Scholar
  102. 102.
    Meister, E. C., Wild, U. P., Klein-Bolting, P., and Holzwarth, A. R., 1988, Time response of small side-on photomultiplier tubes in time-correlated single-photon counting measurements, Rev. Sci. Instrum. 59: 499–501.Google Scholar
  103. 103.
    Bauer, R. K., and Baiter, A., 1979, A method of avoiding wavelength-dependent errors in decay-time measurements, Opt. Commun. 28: 91–96.Google Scholar
  104. 104.
    Kolber, Z. S., and Barkley, M. D., 1986, Comparison of approaches to the instrumental response function in fluorescence decay measurements, Anal. Biochem. 152: 6–21.Google Scholar
  105. 105.
    Vecer, J., Kowalczyk, A. A., Davenport, L., and Dale, R. E., 1993, Reconvolution analysis in time-resolved fluorescence experiments—an alternative approach: Reference-to-excitation-to-fluo-rescence reconvolution, Rev. Sci. Instrum. 64: 3413–3424.Google Scholar
  106. 106.
    Kilin, S. F., 1962, The duration of photo-and radioluminescence of organic compounds, Opt. Spectrosc. 12: 414–416.Google Scholar
  107. 107.
    Mauzerall, D., Ho, P. P., and Alfano, R. F., 1985, The use of short lived fluorescent dyes to correct for artifacts in the measurements of fluorescence lifetimes, Photochem. Photobiol. 42: 183–186.Google Scholar
  108. 108.
    Van Den Zegel, M., Boens, N., Daems, D., and De Schryver, F. C., 1986, Possibilities and limitations of the time-correlated single photon counting technique: A comparative study of correction methods for the wavelength dependence of the instrument response function, Chem. Phys. 101: 311–335.Google Scholar
  109. 109.
    James, D. R., Demmer, D. R. M., Verrall, R. E., and Steer, R. P., 1983, Excitation pulse-shape mimic technique for improving picosecond-laser excited time-correlated single-photon counting de-convolutions, Rev. Sci. Instrum. 54: 1121–1130.Google Scholar
  110. 110.
    Zuker, M., Szabo, A. G., Bramall, L., Krajcarski, D. T., and Selin-ger, B., 1985, Delta function convolution method (DFCM) for fluorescence decay experiments, Rev. Sci. Instrum. 56: 14–22.Google Scholar
  111. 111.
    Castelli, F., 1985, Determination of correct reference fluorescence lifetimes by self-consitent internal calibration, Rev. Sci. Instrum. 56: 538–542.Google Scholar
  112. 112.
    Vos, K., van Hoek, A., and Visser, A. J. W. G., 1987, Application of a reference convolution method to tryptophan fluorescence in proteins, Eur. J. Biochem. 165: 55–63.Google Scholar
  113. 113.
    Martinho, J. M. G., Egan, L. S., and Winnik, M. A., 1987, Analysis of the scattered light component in distorted fluorescence decay profiles using a modified delta function convolution method, Anal. Chem. 59: 861–864.Google Scholar
  114. 114.
    Ricka, J., 1981, Evaluation of nanosecond pulse-fluorometry measurements—no need for the excitation function, Rev. Sci. Instrum. 52: 195–199.Google Scholar
  115. 115.
    Visser, A. J. W. G., Kulinski, T., and van Hoek, A., 1988, Fluorescence lifetime measurements of pseudoazulenes using picosecond-resolved single photon counting, J. Mol. Struct. 175: 111–116.Google Scholar
  116. 116.
    Holtom, G. R., 1990, Artifacts and diagnostics in fast fluorescence measurements, Proc. SPIE 1204: 2–12.Google Scholar
  117. 117.
    Grinvald, A., 1976, The use of standards in the analysis of fluorescence decay data, Anal. Biochem. 75: 260–280.Google Scholar
  118. 118.
    Lampert, R. A., Chewter, L. A., Phillips, D., O’Connor, D. V., Roberts, A. J., and Meech, S. R., 1983, Standards for nanosecond fluorescence decay time measurements, Anal. Chem. 55: 68–73.Google Scholar
  119. 119.
    Schiller, N. H., and Alfano, R. R., 1980, Picosecond characteristics of a spectrograph measured by a streak camera/video readout system, Opt. Commun. 35 (3): 451–454.Google Scholar
  120. 120.
    Rubin, B., and Herman, R. M., 1981, Monochromators as light stretchers, Am. J. Phys. 49: 868–871.Google Scholar
  121. 121.
    Imhof, R.E., and Birch, D.J. S., 1982, Distortion of gaussian pulses by a diffraction grating, Opt. Commun. 42(2): 83–86.Google Scholar
  122. 122.
    Saari, P., Aaviksoo, J., Freiberg, A., and Timpmann, K., 1981, Elimination of excess pulse broadening at high spectral resolution of picosecond duration light emission, Opt. Commun. 39 (1,2): 94–98.Google Scholar
  123. 123.
    Bebelaar, D., 1986, Compensator for the time dispersion in a monochromator, Rev. Sci. Instrum. 57: 1686–1687.Google Scholar
  124. 124.
    Bhaumik, M. L., Clark, G. L., Snell, J., and Ferder, L., 1965, Stroboscopic time-resolved spectroscopy, Rev. Sci. Instrum. 36: 37–40.Google Scholar
  125. 125.
    Barisas, B. G., and Leuther, M. D., 1980, Grid-gated photomulti-plier photometer with subnanosecond time response, Rev. Sci. Instrum. 51: 74–78.Google Scholar
  126. 126.
    Steingraber, O. J., and Berlman, I. B., 1963, Versatile technique for measuring fluorescence decay times in the nanosecond region, Rev. Sci. Instrum. 34: 524–529.Google Scholar
  127. 127.
    Hundley, L., Coburn, T., Garwin, E., and Stryer, L., 1967, Nanosecond fluorimeter, Rev. Sci. Instrum. 38: 488–492.Google Scholar
  128. 128.
    James, D. R., Siemiarczuk, A., and Ware, W. R., 1992, Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes, Rev. Sci. Instrum. 63: 1710–1716.Google Scholar
  129. 129.
    Nordlund, T. M., 1991, Streak camera for time-domain fluorescence, in Topics in Fluorescence Spectroscopy, Volume 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 183–260.Google Scholar
  130. 130.
    Schiller, N. H., 1984, Picosecond streak camera photonics, in Semiconductors Probed by Ultrafast Laser Spectroscopy, Vol. II, Academic Press, pp. 441–458.Google Scholar
  131. 131.
    Campillo, A. J., and Shapiro, S. L., 1983, Picosecond streak camera fluorometry—a review, IEEE J. Quantum Electron. QE-19: 585–603.Google Scholar
  132. 132.
    Knox, W., and Mourou, G., 1981, A simple jitter-free picosecond streak camera, Opt. Commun. 37 (3): 203–206.Google Scholar
  133. 133.
    Ho, P. P., Katz, A., Alfano, R. R., and Schiller, N. H., 1985, Time response of ultrafast streak camera system using femtosecond laser pulses, Opt. Commun. 54(l): 57–62.Google Scholar
  134. 134.
    Bradley, D. J., Mclnerney, J., Dennis, W. M., and Taylor, J. R., 1983, A new synchroscan streak-camera read-out system for use with CW mode locked lasers, Opt. Commun. 44 (5): 357–360.Google Scholar
  135. 135.
    Tsuchiya, Y., and Shinoda, Y., 1985, Recent developments of streak cameras, Proc. SPIE 533:110–116.Google Scholar
  136. 136.
    Kinoshita, K., Ito, M., and Suzuki, Y., 1987, Femtosecond streak tube, Rev. Sci. Instrum. 58: 932–938.Google Scholar
  137. 137.
    Watanabe, M., Koishi, M., and Roehrenbeck, P. W., 1993, Development and characteristics of a new picosecond fluorescence lifetime system, Proc. SPIE 1885: 155–164.Google Scholar
  138. 138.
    Wiessner, A., and Staerk, H., 1993, Optical design considerations and performance of a spectro-streak apparatus for time-resolved fluorescence spectroscopy, Rev. Sci. Instrum. 64: 3430–3439.Google Scholar
  139. 139.
    Graf, U., Bühler, C., Betz, M., Zuber, H., and Anliker, M., 1994, Optimized streak-camera system: Wide excitation range and extended time scale for fluorescence lifetime measurement, Proc. SPIE 2137: 204–210.Google Scholar
  140. 140.
    Kume, H., Taguchi, T., Nakatsugawa, K., Ozawa, K., Suzuki, S., Samuel, R., Nishimura, Y., and Yamazaki, I., 1992, Compact ultra-fast microchannel plate photomultiplier tube, Proc. SPIE 1640: 440–447.Google Scholar
  141. 141.
    Porter, G., Reid, E. S., and Tredwell, C. J., 1974, Time resolved fluorescence in the picosecond region, Chem. Phys. Lett. 29: 469–472.Google Scholar
  142. 142.
    Beddard, G. S., Doust, T., and Porter, G., 1981, Picosecond fluorescence depolarisation measured by frequency conversion, Chem. Phys. 61: 17–23.Google Scholar
  143. 143.
    Kahlow, M. A., Jarzeba, W., DuBruil, T. P., and Barbara, P. F., 1988, Ultrafast emission spectroscopy in the ultraviolet by time-gated upconversion, Rev. Sci. Instrum. 59: 1098–1109.Google Scholar
  144. 144.
    Ware, W. R., Doemeny, L. J., and Nemzek, T. L., 1973, Deconvo-lution of fluorescence and phosphorescence decay curves. A least-squares method, J. Phys. Chem. 77: 2038–2048.Google Scholar
  145. 145.
    Isenberg, I., Dyson, R. D., and Hanson, R., 1973, Studies on the analysis of fluorescence decay data by the method of moments, Biophys.J. 13: 1090–1115.Google Scholar
  146. 146.
    Small, E. W., and Isenberg, I., 1977, On moment index displacement, J. Chem. Phys. 66: 3347–3351.Google Scholar
  147. 147.
    Small, E. W., 1992, Method of moments and treatment of nonran-dom error, Methods Enzymol. 210:237–279.Google Scholar
  148. 148.
    Gafni, A., Modlin, R. L., and Brand, L., 1975, Analysis of fluorescence decay curves by means of the Laplace transformation, Bio-phys. J. 15: 263–280.Google Scholar
  149. 149.
    Almgren, M., 1973, Analysis of pulse fluorometry data of complex systems, Chem. Scri. 3: 145–148.Google Scholar
  150. 150.
    Ameloot, M., 1992, Laplace deconvolution of fluorescence decay surfaces, Methods Enzymol. 210:237–279.Google Scholar
  151. 151.
    Ameloot, M., and Hendrickx, H., 1983, Extension of the performance of laplace deconvolution in the analysis of fluorescence decay curves, Biophys. J. 44: 27–38.Google Scholar
  152. 152.
    Livesey, A. K., and Brochón, J. C., 1987, Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method, Biophys. J. 52: 693–706.Google Scholar
  153. 153.
    Brochón, J.-C., 1994, Maximum entropy method of data analysis in time-resolved spectroscopy, Methods Enzymol. 240:262–311.Google Scholar
  154. 154.
    Zhang, Z., Grattan, K. T. V., Hu, Y., Palmer, A. W., and Meggitt, B. T., 1996, Prony’s method for exponential lifetime estimations in fluorescence based thermometers, Rev. Sci. Instrum. 67: 2590–2594.Google Scholar
  155. 155.
    López, R. J., González, F., and Moreno, F., 1992, Application of a sine transform method to experiments of single-photon decay spectroscopy: Single exponential decay signals, Rev. Sci. Instrum. 63: 3268–3273.Google Scholar
  156. 156.
    Carraway, E. R., Hauenstein, B. L., Demás, J. N., and DeGraff, B. A., 1985, Luminescence lifetime measurements. Elimination of phototube time shifts with the phase plane method, Anal. Chem. 57: 2304–2308.Google Scholar
  157. 157.
    Bajzer, Z., Zelic, A., and Prendergast, F. G., 1995, Analytical approach to the recovery of short fluorescence lifetimes from fluorescence decay curves, Biophys. J. 69: 1148–1161.Google Scholar
  158. 158.
    O’Connor, D. V. O., Ware, W. R., and Andre, J. C., 1979, Deconvolution of fluorescence decay curves. A critical comparison of techniques, J. Phys. Chem. 83: 1333–1343.Google Scholar
  159. Johnson, M. L., 1994, Use of least-squares techniques in biochemistry, Methods Enzymol . 240:1–22.Google Scholar
  160. 160.
    Straume, M., Frasier-Cadoret, S. G., and Johnson, M. L., 1991, Least-squares analysis of fluorescence data, in Topics in Fluorescence Spectroscopy, Volume 2, Principles, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 177–239.Google Scholar
  161. 161.
    Gryczynski, I., unpublished observations.Google Scholar
  162. 162.
    Johnson, M. L., personal communication.Google Scholar
  163. 163.
    Johnson, M. L., and Faunt, L. M., 1992, Parameter estimation by least-squares methods, Methods Enzymol. 210:1–37.Google Scholar
  164. 164.
    Johnson, M. L., and Frasier, S. G., 1985, Nonlinear least-squares analysis, Methods Enzymol. 117:301–342.Google Scholar
  165. 165.
    Box, G. E. P., 1960, Fitting empirical data, Ann. N. Y. Acad. Sci. 86: 792–816.Google Scholar
  166. 166.
    Bates, D. M., and Watts, D. G., 1988, Nonlinear Regression Analysis and Its Applications, John Wiley Sons, New York.Google Scholar
  167. 167.
    Straume, M., and Johnson, M. L., 1992, Monte Carlo method for determining complete confidence probability distributions of estimated model parameters, Methods Enzymol. 210:117–129.Google Scholar
  168. 168.
    Alcala, J. R., 1994, The effect of harmonic conformational trajectories on protein fluorescence and lifetime distributions, J. Chem. Phys. 101: 4578–4584.Google Scholar
  169. 169.
    Alcala, J. R., Gratton, E., and Prendergast, F. G., 1987, Fluorescence lifetime distributions in proteins, Biophys. J. 51: 597–604.Google Scholar
  170. 170.
    James, D. R., and Ware, W. R., 1985, A fallacy in the interpretation of fluorescence decay parameters, Chem. Phys. Lett. 120: 455–459.Google Scholar
  171. 171.
    Vix, A., and Lami, H., 1995, Protein fluorescence decay: Discrete components or distribution of lifetimes? Really no way out of the dilemma?, Biophys. J. 68: 1145–1151.Google Scholar
  172. 172.
    Lakowicz, J. R., Cherek, H., Gryczynski, I., Joshi, N., and Johnson, M. L., 1987, Analysis of fluorescence decay kinetics measured in the frequency-domain using distribution of decay times, Biophys. Chem. 28: 35–50.Google Scholar
  173. 173.
    Beechem, J. M., Knutson, J. R., Ross, J. B. A., Turner, B. W., and Brand, L., 1983, Global resolution of heterogeneous decay by phase/modulation fluorometry: Mixtures and proteins, Biochemistry 22: 6054–6058.Google Scholar
  174. 174.
    Beechem, J. M., Ameloot, M., and Brand, L., 1985, Global analysis of fluorescence decay surfaces: Excited-state reactions, Chem. Phys. Lett. 120: 466–472.Google Scholar
  175. 175.
    Knutson, J. R., Beechem, J. M., and Brand, L., 1983, Simultaneous analysis of multiple fluorescence decay curves: A global approach, Chem. Phys. Lett. 102: 501–507.Google Scholar
  176. 176.
    Beechem, J. M., 1989, A second generation global analysis program for the recovery of complex inhomogeneous fluorescence decay kinetics, Chem. Phys. Lipids 50: 237–251.Google Scholar
  177. 177.
    Beechem, J. M., Gratton, E., Ameloot, M., Knutson, J. R., and Brand, L., 1991, The global analysis of fluorescence intensity and anisotropy decay data: Second-generation theory and programs, in Topics in Fluorescence Spectroscopy, Volume 2, Principles, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 241–305.Google Scholar
  178. 178.
    Beechem, J. M., 1992, Global analysis of biochemical and biophysical data, Methods Enzymol. 210:37–55.Google Scholar
  179. 179.
    Chabbert, M., Hillen, W., Hansen, D., Takahashi, M., and Bousquet, J.-A., 1992, Structural analysis of the operator binding domain of TnlO-encoded Tet repressor: A time-resolved fluorescence and anisotropy study, Biochemistry 31: 1951–1960.Google Scholar
  180. 180.
    Dattelbaum, J. D., and Castellano, F. N., unpublished observations.Google Scholar
  181. 181.
    Malak, H., and Gryczynski, I., unpublished observations.Google Scholar
  182. 182.
    Frackowiak, D., Zelent, B., Malak, H., Planner, A., Cegielski, R., Munger, G., and Leblanc, R. M., 1994, Fluorescence of aggregated forms of CHI a in various media, J. Photochem. Photobiol. A: Chem. 78: 49–55.Google Scholar
  183. 183.
    Werst, M., Jia, Y., Mets, L., and Fleming, G. R., 1992, Energy transfer and trapping in the photosystem I core antenna, Biophys. J. 61: 868–878.Google Scholar
  184. 184.
    Gulotty, R. J., Mets, L., Alberte, R. S., and Fleming, G. R., 1986, Picosecond fluorescence studies of excitation dynamics in photo-synthetic light-harvesting arrays, in Applications of Fluorescence in the Biomedical Sciences, D. L. Taylor, A. S. Waggoner, F. Lanni, R. F. Murphy, and R. R. Birge (eds.), Alan R. Liss, New York, pp. 91–104.Google Scholar
  185. 185.
    Visser, A. J. W. G., 1984, Kinetics of stacking interactions in flavin adenine dinucleotide from time-resolved flavin fluorescence, Photochem. Photobiol. 40: 703–706.Google Scholar
  186. 186.
    Castellano, F. N., Heimer, T. A., Tandhasetti, M. T., and Meyer, G. J., 1994, Photophysical properties of ruthenium polypyridyl photonic Si02 gels, Chem. Mater. 6: 1041–1048.Google Scholar
  187. 187.
    Yoshihara, K., Nagasawa, Y., Yartsev, A., Kumazaki, S., Kandori, H., Johnson, A. E., and Tominaga, K., 1994, Femtosecond intermo-lecular electron transfer in condensed systems, J. Photochem. Photobiol. A: Chem. 80: 169–175.Google Scholar
  188. 188.
    Nagasawa, Y., Yartsev, A. P., Tominaga, K., Johnson, A. E., and Yoshihara, K., 1993, Substituent effects on intermolecular electron transfer: Coumarins in electron-donating solvents, J. Am. Chem. Soc. 115: 7922–7923.Google Scholar
  189. 189.
    Montgomery, D. C., and Peck, E. A., 1982, Introduction to Linear Regression Analysis, John Wiley Sons, New York, pp. 466–475.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations