Abstract

Fluorescence probes represent the most important area of fluorescence spectroscopy. One can spend a great deal of time describing the instrumentation for fluorescence spectroscopy, including light sources, monochromators, lasers, and detectors. However, in the final analysis, the wavelength and time resolution required of the instruments are determined by the spectral properties of the fluorophores. Furthermore, the information available from the experiments is determined by the properties of the probes. Only probes with nonzero anisotropies can be used to measure rotational diffusion, and the lifetime of the fluorophore must be comparable to the correlation time of interest. Only probes which are sensitive to pH can be used to measure pH. And only probes with reasonably long excitation and emission wavelengths can be used with tissues which display autofluorescence at short excitation wavelengths.

Keywords

Green Fluorescent Protein Emission Spectrum Fluorescence Spectroscopy Pyridoxal Phosphate Sulfonyl Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Demchenko, A. P., 1981, Ultraviolet Spectroscopy of Proteins, Springer-Verlag, New York.Google Scholar
  2. 2.
    Longworth, J. W., 1971, Luminescence of polypeptides and proteins, in Excited States of Proteins and Nucleic Acids, R. F. Steiner and I. Welnryb (eds.), Plenum Press, New York, pp. 319–484.CrossRefGoogle Scholar
  3. 3.
    Velick, S. E, 1958, Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes, J. Biol. Chem. 233: 1455–1467.Google Scholar
  4. 4.
    Gafni, A., and Brand, L., 1976, Fluorescence decay studies of reduced nicotinamide adenine dinucleotide in solution and bound to liver alcohol dehydrogenase, Biochemistry 15: 3165–3171.CrossRefGoogle Scholar
  5. 5.
    Brochon, J.-C., Wahl, P., Monneuse-Doublet, M.-O., and Olomucki, A., 1977, Pulse fluorimetry study of octopine dehydrogenase-reduced nicotinamide adenine dinucleotide complexes, Biochemistry 16: 4594–4599.CrossRefGoogle Scholar
  6. 6.
    Churchich, J. E., 1965, Fluorescence properties of pyridoxamine 5-phosphate, Biochim. Biophys. Acta 102: 280–288.CrossRefGoogle Scholar
  7. 7.
    Honikel, K. O., and Madsen, N. B., 1972, Comparison of the absorbance spectra and fluorescence behavior of phosphorylase b with that of model pyridoxal phosphate derivatives in various solvents, J. Biol. Chem. 247: 1057–1064.Google Scholar
  8. 8.
    Vaccari, S., Benci, S., Peracchi, A., and Mozzarelli, A., 1997, Time-resolved fluorescence of pyridoxal 5’-phosphate-containing enzymes: Tryptophan synthetase and 0-acetylserine sulthydrylase, J. Fluoresc. 7: 135S - 137S.Google Scholar
  9. 9.
    Kwon, 0.-S., Blazquez, M., and Churchich, J. E., 1994, Luminescence spectroscopy of pyridoxic acid and pyridoxic acid bound to proteins, Eur. J. Biochem. 219: 807–812.Google Scholar
  10. 10.
    Xiao, G.-S., and Zhou, J.-M., 1996, Conformational changes at the active site of bovine pancreatic RNase A at low concentrations of 1. guanidine hydrochloride probed by pyridoxal 5’-phosphate, Biochim. Biophys. Acta 1294: 1–7.CrossRefGoogle Scholar
  11. 11.
    Churchich, J. E., 1986, Fluorescence properties of free and bound pyridoxal phosphate and derivatives, in Pyridoxal Phosphate: Chemical, Biochemical and Medical Aspects, Part A, D. Dolphin (ed.), Wiley, New York, pp. 545–567.Google Scholar
  12. 12.
    Churchich, J. E., 1976, Fluorescent probe studies of binding sites in proteins and enzymes, in Modem Fluorescence Spectroscopy, Vol, 2, E. L. Wehry (ed.), Plenum Press, New York, pp. 217–237.CrossRefGoogle Scholar
  13. 13.
    Vaccari, S., Benci, S., Peracchi, A., and Mozzarelli, A., 1996, Time-resolved fluorescence of tryptophan synthase, Biophys. Chem. 61: 922.CrossRefGoogle Scholar
  14. 14.
    Personal communication from Dr. Rebecca Richards-Kortum.Google Scholar
  15. 15.
    Visser, A. J. W. G., 1984, Kinetics of stacking interactions in flavin adenine dinucleotide from time-resolved flavin fluorescence, Photochem. Photobiol. 40: 703–706.CrossRefGoogle Scholar
  16. 16.
    Leenders, R., Kooijman, M., van Hoek, A., Veeger, C., and Visser, A. J. W. G., 1993, Flavin dynamics in reduced flavodoxins, Eue. J. Biochem. 211: 37–45.CrossRefGoogle Scholar
  17. 17.
    Wolfbeis, O. S., 1985, The fluorescence of organic natural products, in Molecular Luminescence Spectroscopy, S. G. Schulman (ed.), John Wiley & Sons, New York, Part 1, pp. 167–370.Google Scholar
  18. 18.
    Richards-Kortum, R., and Sevick-Muraca, E., 1996, Quantitative optical spectroscopy for tissue diagnosis, Annu. Rev. Phys. Chem. 47: 555–606.CrossRefGoogle Scholar
  19. 19.
    Li, B., and Lin, S.-X., 1996, Fluorescence-energy transfer in human estradiol 1713-dehydrogenase—NADH complex and studies on the coenzyme binding, Eur. J. Biochem. 235: 180–186.CrossRefGoogle Scholar
  20. 20.
    Haugland, R. P., 1996, Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Inc., Eugene, Oregon.Google Scholar
  21. 21.
    Hemmila, I. A., 1991, Applications of Fluorescence in Immunoassays, John Wiley & Sons, New York, pp. 107–167.Google Scholar
  22. 22.
    Weber, G., 1951, Polarization of the fluorescence of macromolecules, Biochem. J. 51: 155–167.Google Scholar
  23. 23.
    BioProbes 25, 1997, New Products and Applications, Molecular Probes, Inc., Eugene, Oregon.Google Scholar
  24. 24.
    Waggoner, A., 1995, Covalent labeling of proteins and nucleic acids with fluorophores, Methods Enzymol. 246: 362–373.CrossRefGoogle Scholar
  25. 25.
    Hemmila I. A., 1991, Applications of Fluorescence in Immunoassays, John Wiley & Sons, New York, page 67.Google Scholar
  26. 26.
    Johnson, I. D., Kang, H. C., and Haugland, R. P.,1991, Fluorescent membrane probes incorporating dipyrrometheneboron difluoride fluorophores, Anal. Biochem. 198: 228–237.Google Scholar
  27. 27.
    Weber, G., and Farris, R J., 1979, Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-Propionyl-2-(dimethylamino)naphthalene, Biochemistry 18: 3075–3078.CrossRefGoogle Scholar
  28. 28.
    Prendergast, E G., Meyer, M., Carlson, G. L., rida, S., and Potter, J. D., 1983, Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan), J. Biol. Chem. 258: 7541–7544.Google Scholar
  29. 29.
    Rottenberg, H., 1992, Probing the interactions of alcohols with biological membranes with the fluorescent probe Prodan, Biochemistry 31: 9473–9481.CrossRefGoogle Scholar
  30. 30.
    Slavik, J., 1982, Anilinonaphthalene sulfonate as a probe of membrane composition and function, Biochim. Biophys. Acta 694: 1–25.CrossRefGoogle Scholar
  31. 31.
    Daniel, E., and Weber, G., 1966, Cooperative effects in binding by bovine serum albumin. I. The binding of 1-anilino-8-naphthalenesulfonate. Fluorimetric titrations, in Cooperative Effects in Binding by Albumin, 5: 1893–1900.Google Scholar
  32. 32.
    Prendergast, E. G., Haugland, R. P., and Callahan, P. J., 1981, 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5 triene: Synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers, Biochemistry 20: 7333–7338.Google Scholar
  33. 33.
    Sklar, L. A., Hudson, B. S., Petersen, M., and Diamond, J., 1977, Conjugated polyene fatty acids on fluorescent probes: Spectroscopic characterization, Biochemistry 16: 813–818.CrossRefGoogle Scholar
  34. 34.
    Itoh, T., and Kohler, B. E., 1987, Dual fluorescence of diphenylpolyenes, J. Phys. Chem. 91: 1760–1764.CrossRefGoogle Scholar
  35. 35.
    Alford, P. C., and Palmer, T. F., 1982, Fluorescence of DPH derivatives, evidence for emission from S2 and S1 excited states, Chem. Phys. Lett. 86: 248–253.CrossRefGoogle Scholar
  36. 36.
    Cundall, R. B., Johnson, I., Jones, M. W., Thomas, E. W., and Munro, I. H., 1979, Photophysical properties of DPH derivatives, Chem. Phys. Lett. 64: 39–42.CrossRefGoogle Scholar
  37. 37.
    Kinnunen, P. K. J., Koiv, A., and Mustonen, P., 1993, Pyrene-labeled lipids as fluorescent probes in studies on biomembranes and membrane models, in Fluorescence Spectroscopy: New Methods and Applications, O. S. Wolfbeis (ed.), Springer-Verlag, New York, pp. 159–171.CrossRefGoogle Scholar
  38. 38.
    Smiley, S. T., Reers, M., Mottola-Hartshom, C., Lin, M., Chen, A., Smith, T. W., Steele, G. D., and Chen, L. B., 1991, Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1, Proc. Natl. Acad. Sci. U.S.A. 88: 3671–3675.CrossRefGoogle Scholar
  39. 39.
    Sims, P. J., Waggoner, A. S., Wang, C.-H., and Hoffman, J. F., 1974, Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles, Biochemistry 13: 3315–3336.CrossRefGoogle Scholar
  40. 40.
    Gross, E., Bedlack, R. S., and Loew, L. M., 1994, Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential, Biophys. J. 67: 208–216.CrossRefGoogle Scholar
  41. 41.
    Zhang, J., Davidson, R. M., Wei, M., and Loew, L. M., 1998, Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons, Biophys. J. 74: 48–53.CrossRefGoogle Scholar
  42. 42.
    Loew, L. M., 1996, Potentiometric dyes: Imaging electrical activity of cell membranes, Pure Appl. Chem. 68: 1405–1409.CrossRefGoogle Scholar
  43. 43.
    Loew, L. M., 1994, Voltage-sensitive dyes and imaging neuronal activity, Neuroprotocols 5: 72–79.Google Scholar
  44. 44.
    Dragsten, P. R., and Webb, W. W., 1978, Mechanism of the membrane potential sensitivity of the fluorescent membrane probe merocyanine 540, Biochemistry 17: 5228–5240.CrossRefGoogle Scholar
  45. 45.
    Loew, L. M., 1994, Characterization of potentiometric membrane dyes, Adv. Chem. Ser. 235: 151–173.CrossRefGoogle Scholar
  46. 46.
    Waggoner, A. S., 1979, Dye indicators of membrane potential, Annu. Rev. Biophys. Bioeng. 8: 47–68.CrossRefGoogle Scholar
  47. 47.
    Loew, L. M., 1982, Design and characterization of electrochromic membrane probes, J. Biochem. Biophys. Methods 6: 243–260.CrossRefGoogle Scholar
  48. 48.
    Thompson, R. B., 1994, Red and near-infrared fluorometry, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 151–222.Google Scholar
  49. 49.
    Southwick, P. L., Ernst, L. A., Tauriello, E. W., Parker, S. R., Mujumdar, R. B., Mujumdar, S. W., Clever, H. A., and Waggoner, A. S., 1990, Cyanine dye labeling reagents—carboxymetltylindocyanine succinimidyl esters, Cytometry 11: 418–430.CrossRefGoogle Scholar
  50. 50.
    Rahavendran, S. V., and Karnes, H. T., 1996, Application of rhodamine 800 for reversed phase liquid chromatographic detection using visible diode laser induced fluorescence, Anal. Chem. 68: 3763–3768.CrossRefGoogle Scholar
  51. 51.
    Rahavendran, S. V., and Karnes, H. T., 1996, An oxazine reagent for derivatization of carboxylic acid analytes suitable for liquid chromatographic detection using visible diode laser-induced fluorescence, J. Pharm. Biomed. Anal. 15: 83–98.CrossRefGoogle Scholar
  52. 52.
    Flanagan, J. H., Romero, S. E., Legendre, B. L., Hammer, R. P., and Soper, A., 1997, Heavy-atom modified near-IR fluorescent dyes for DNA sequencing applications: Synthesis and photophysical characterization, Pmc. SPIE 2980: 328–337.CrossRefGoogle Scholar
  53. 53.
    Owens, C. V., Davidson, Y. Y., Kar, S., and Soper, S. A., 1997, High-resolution separation of DNA restriction fragments using capillary electrophoresis with near-IR, diode-based, laser-induced fluorescence detection, Anal. Chem. 69: 1256–1261.CrossRefGoogle Scholar
  54. 54.
    Matsuoka, M., 1990, Infrared Absorbing Dyes, Plenum Press, New York.Google Scholar
  55. 55.
    Leznoff, C. C., and Lever, A. B. P., 1989, Phthalocyanines: Properties and Applications, VCH Publishers, New York.Google Scholar
  56. 56.
    Kessler, M. A., and Wolfbeis, O. S., 1992, Laser-induced fluorometric determination of albumin using longwave absorbing molecular probes, Anal. Biochem. 200: 254–259.CrossRefGoogle Scholar
  57. 57.
    Steiner, R. F., and Kubota, Y., 1983, Fluorescent dye—nucleic acid complexes, in Excited States of Biopolymers, R. F. Steiner (ed.), Plenum Press, New York, pp. 203–254.CrossRefGoogle Scholar
  58. 58.
    Georghiou, S., 1977, Interaction of acridine drugs with DNA and nucleotides, Photochem. Photobiol. 26: 59–68.CrossRefGoogle Scholar
  59. 59.
    Suh, D., and Chaires, J. B., 1995, Criteria for the mode of binding of DNA binding agents, Bioorg. Med. Chem. 3: 723–728.CrossRefGoogle Scholar
  60. 60.
    Eriksson, S., Kim, S. K., Kubista, M., and Norden, B., 1993, Binding of 4’,6-diamidino-2-phenylindole (DAPI) to AT regions of DNA: Evidence for an allosteric conformational change, Biochemistry 32: 2987–2998.CrossRefGoogle Scholar
  61. 61.
    Parkinson, J. A., Barber, J., Douglas, K. T., Rosamond, J., and Sharpies, D., 1990, Minor-groove recognition of the self-complementary duplex d(CGCGAATTCGCG)2 by Hoechst 33258: A high-field NMR study, Biochemistry 29: 10181–10190.CrossRefGoogle Scholar
  62. 62.
    Loontiens, F. G., McLaughlin, L. W., Diekmann, S., and Clegg, R. M., 1991, Binding of Hoechst 33258 and 4’,6-diamidino-2-phenylindole to self-complementary decadeoxynucleotides with modified exocyclic base substitutents, Biochemistry 30: 182–189.CrossRefGoogle Scholar
  63. 63.
    Haq, I., Ladbury, J. E., Chowdhry, B. Z., Jenkins, T. C., and Chaires, J. B., 1997, Specific binding of Hoechst 33258 to the d(CGCAAATTTGCG)2 duplex: Calorimetric and spectroscopic studies, J. Mol. Biol. 271: 244–257.CrossRefGoogle Scholar
  64. 64.
    Glazer, A. N., Peck, K., and Matheis, R. A., 1990, A stable double-stranded DNA ethidium homodimer complex: Application to picogram fluorescence detection of DNA in agarose gels, Pmc. Natl. Acad. Sci, U.S.A., 87: 3851–3855.CrossRefGoogle Scholar
  65. 65.
    Rye, H. S., Yue, S., Wemmer, D. E., Quesada, M A, Haugland, R. P., Mathies, R. A., and Glazer, A. N., 1992, Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: Properties and applications, Nucleic Acids Res. 20: 2803–2812.CrossRefGoogle Scholar
  66. 66.
    Wu, P., Li, H., Nordlund, T. M., and Rigler, R., 1990, Multistate modeling of the time and temperature dependence of fluorescence from 2-aminopurine in a DNA decamer, Proc. SPIE 1204: 262–269.CrossRefGoogle Scholar
  67. 67.
    Nordlund, T. M., Wu, P., Anderson, S., Nilsson, L., Rigler, R., Graslund, A., McLaughlin, L. W., and Gildea, B., 1990, Structural dynamics of DNA sensed by fluorescence from chemically modified bases, Proc. SPIE 1204: 344–353.CrossRefGoogle Scholar
  68. 68.
    Hawkins, M. E., Pfleiderer, W., Mazumder, A., Pommier, Y. G., and Balis, F. M., 1995, Incorporation of a fluorescent guanosine analog into oligonucleotides and its application to a real time assay for the 11IV-1 integrase 3’-processing reaction, Nucleic Acids Res. 23: 2872–2880.CrossRefGoogle Scholar
  69. 69.
    Kulkosky, J., and Skalka, A. M., 1990, HIV DNA integration: Observations and inferences, J. Acquir. Immune Defic. Synth: 3: 839–851.Google Scholar
  70. 70.
    Brown, P. O., 1990, Integration of retroviral DNA, in Current Topics in Microbiology and Immunology, Vol. 157, Springer-Verlag, Berlin, pp. 19–48.Google Scholar
  71. 71.
    Biwersi, J., Tulk, B., and Verkman, A. S., 1994, Long-wavelength chloride-sensitive fluorescent indicators, Anal. Biochem. 219: 139–143.Google Scholar
  72. 72.
    Valeur, B., 1994, Principles of fluorescent probe design for ion recognition, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 21–48.Google Scholar
  73. 73.
    Poenie, M., and Chen, C.-S., 1993, New fluorescent probes for cell biology, in Optical Microscopy, B. Herman and J. J. Lemasters (eds.), Academic Press, New York, pp. 1–25.Google Scholar
  74. 74.
    Szmacinski, H., and Lakowicz, J. R., 1994, Lifetime-based sensing, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 295–334.Google Scholar
  75. 75.
    Czarnik, A. W., 1994, Fluorescent chemosensors for cations, anions, and neutral analytes, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 49–70.Google Scholar
  76. 76.
    Haugland, R. P., and Johnson, I. D., 1993, Detecting enzymes in living cells using fluorogenic substrates, J. Fluoresc. 3: 119–127.CrossRefGoogle Scholar
  77. 77.
    Thou, M., Upson, R. H., Diwu, Z., and Haugland, R. P., 1996, A fluorogenic substrate for 3-glucuronidase: Applications in fluorometric, polyacrylamide gel and histochemical assays, J. Biochem. Biophys. Methods 33: 197–205.CrossRefGoogle Scholar
  78. 78.
    Gershkovich, A. A., and Kholodovych, V. V., 1996, Fluorogenic substrates for proteases based on intramolecular fluorescence energy transfer (IFETS), J. Biochem. Biophys. Methods 33: 135–162.CrossRefGoogle Scholar
  79. 79.
    Geoghegan, K. F, 1996, Improved method for converting an unmodified peptide to an energy-transfer substrate for a proteinase, Bioconjug. Chem. 7: 385–391.CrossRefGoogle Scholar
  80. 80.
    Matayoshi, E. D., Wang, G. T., Krafft, G. A., and Erickson, J., 1990, Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer, Science 247: 954–957.CrossRefGoogle Scholar
  81. 81.
    Zandonella, G., Haalck, L., Spener, F., Faber, K., Paltauf, E., and Hermetter, A., 1995, Inversion of lipase stereospecificity for fluoro-genic alkyldiacyl glycerols: Effect of substrate solubilization, Eur. J. Biochem. 231: 50–55.CrossRefGoogle Scholar
  82. 82.
    Duque, M., Graupner, M., Stütz, H., Wicher, I., Zechner, R., Paltauf, E, and Hermetter, A., 1996, New fluorogenic triacylglycerol analogs as substrates for the determination and chiral discrimination of lipase activities, J. Lipid Res. 37: 868–876.Google Scholar
  83. 83.
    Naleway, J. J., Fox, C. M. J., Robinhold, D., Terpetschnig, E., Olson, N. A., and Haugland, R. P., 1994, Synthesis and use of new fluorogenic precipitating substrates, Tetrahedron Lett. 35: 8569–8572.CrossRefGoogle Scholar
  84. 84.
    Huang, Z., Terpetschnig, E., You, W., and Haugland, R. P., 1992, 2-(2’-Phosphoryloxyphenyl)-4(311)-quinazolinone derivatives as fluorogenic precipitating substrates of phosphatases, Anal. Biochem. 207: 32–39.Google Scholar
  85. 85.
    Ziomek, C. A., Lepire, M. L., and Tones, I., 1990, A highly fluorescent simultaneous azo dye technique for demonstration of nonspecific alkaline phosphatase activity, J. Histochem. Cytochem. 38: 437–442.CrossRefGoogle Scholar
  86. 86.
    Hale, J. E., and Schroeder, E, 1982, Asymmetric transbilayer distribution of sterol across plasma membranes determined by fluorescence quenching of dehydroergosterol, Eur. J. Biochem. 122: 649–661.CrossRefGoogle Scholar
  87. 87.
    Fischer, R. T., Cowlen, M. S., Dempsey, M. E., and Schroeder, E, 1985, Fluorescence of A5.7,9(1’)’22-ergostatetraen-30-ol in micelles, sterol carrier protein complexes, and plasma membranes, Biochemistry 24: 3322–3331.CrossRefGoogle Scholar
  88. 88.
    Schroeder, E, Barenholz, Y., Gratton, E., and Thompson, T. E., 1987, A fluorescence study of dehydroergosterol in phosphatidylcholne bilayer vesicles, Biochemistry 26: 2441–2448.CrossRefGoogle Scholar
  89. 89.
    Loura, L. M. S., and Prieto, M., 1997, Aggregation state of dehydroergosterol in water and in a model system of membranes, J. Fluoresc. 7: 1735–175S.Google Scholar
  90. 90.
    Hwang, K.-J., O’Neil, J. P., and Katzenellenbogen, J. A., 1992, 5,6,11,12-Tetrahydrochrysenes: Synthesis of rigid stilbene systems designed to be fluorescent ligands for the estrogen receptor, J. Org. Chem. 57: 1262–1271.Google Scholar
  91. 91.
    Bowen, C. M., and Katzenellenbogen, J. A., 1997, Synthesis and spectroscopic characterization of two aza-tetrahydrochrysenes as potential fluorescent ligands for the estrogen receptor, J. Org. Chem. 62: 7650–7657.CrossRefGoogle Scholar
  92. 92.
    Wolkowicz, P. E., Pownall, H. J., and McMillin-Wood, J. B., 1982, (1-Pyrenebutyryl)camitine and 1-pyrenebutyryl coenzyme A: Fluorescent probes for lipid metabolite studies in artificial and natural membranes, Biochemistry 21: 2990–2996.Google Scholar
  93. 93.
    Rossomando, E. E, Jahngen, J. H., and Eccleston, J. E, 1981, Formycin 5’-triphosphate, a fluorescent analog of ATP, as a substrate for adenylate cyclase, Proc. Natl. Acad. Sci. U.S.A. 78: 2278–2282.CrossRefGoogle Scholar
  94. 94.
    Kung, C. E., and Reed, J. K., 1986, Microviscosity measurements of phospholipid bilayers using fluorescent dyes that undergo torsional relaxation, Biochemistry 25:6114–6121. See also Biochemistry 28: 6678–6686 (1989).CrossRefGoogle Scholar
  95. 95.
    Iwaki, T., Torigoe, C., Noji, M., and Nakanishi, M., 1993, Antibodies for fluorescent molecular rotors, Biochemistry 32: 7589–7592.CrossRefGoogle Scholar
  96. 96.
    Rettig, W., and Lapouyade, R., 1994, Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic photoreactions, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 109–149.Google Scholar
  97. 97.
    Teale, E. W. J., and Dale, R. E., 1970, Isolation and spectral characterization of phycobiliproteins, Biochem. J. 116: 161–169.Google Scholar
  98. 98.
    Glazer, A. N., 1985, Light harvesting by phycobilisomes, Annu. Rev. Biophys. Biophys. Chem. 14: 47–77.CrossRefGoogle Scholar
  99. 99.
    MacColl, R., and Guard-Friar, D., 1987, Phycobiliproteins, CRC Press, Boca Raton, Florida.Google Scholar
  100. 100.
    Glazer. A. N., and Stryer, L., 1984, Phycofluor probes, Trends Biochem. Soc. 423–427.Google Scholar
  101. 101.
    White, J. C., and Stryer, L., 1987, Photostability studies of phycobiliprotein fluorescent labels, Anal. Biochem. 161: 442–452.CrossRefGoogle Scholar
  102. 102.
    Oi, V. T., Glazer, A. N., and Stryer, L., 1982, Fluorescent phycobiliprotein conjugates for analyses of cells and molecules, J. Cell Biol. 93: 981–986.CrossRefGoogle Scholar
  103. 103.
    Holzwarth, A. R., Wendler, J., and Suter, G. W., 1987, Studies on chromophore coupling in isolated phycobiliproteins, Biophys. J. 51: 1–12.CrossRefGoogle Scholar
  104. 104.
    Kronick, M. N., and Grossman, P. D., 1983, Immunoassay techniques with fluorescent phycobiliprotein conjugates, Clin. Chem. 29: 1582–1586.Google Scholar
  105. 105.
    Kronick, M. N., 1986, The use of phycobiliproteins as fluorescent labels in immunoassays, J. Immun. Methods 92: 1–13.CrossRefGoogle Scholar
  106. 106.
    Nguyen, D. C., Keller, R. A., Jett, J. H., and Martin, J. C., 1987, Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser induced fluorescence, Anal. Chem. 59: 2158–2161.CrossRefGoogle Scholar
  107. 107.
    Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., and Remington, S. J., 1996, Crystal structure of the Aequorea victoria green fluorescent protein, Science 273: 1392–1395.CrossRefGoogle Scholar
  108. 108.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D.C., 1994, Green fluorescentprotein as a marker for gene expression, Science 263: 802–805.CrossRefGoogle Scholar
  109. 109.
    Jellyfish light up mice,“ Science 277:41.Google Scholar
  110. 110.
    Ehrig, T., O’Kane, D. J., and Prendergast, F. G., 1995, Green fluorescent protein mutants with altered fluorescence excitation spectra, FEBS Lett. 367: 163–166.CrossRefGoogle Scholar
  111. 111.
    Delagrave, S., Hawtin, R. E., Silva, C. M., Yang, M. M., and Youvan, D. C., 1995, Red-shifted excitation mutants of the green fluorescent protein, Bio/l’echnology 13: 151–154.CrossRefGoogle Scholar
  112. 112.
    Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien, R. Y., 1995, Understanding, improving and using green fluorescent proteins, Trends Biochem. Soc. 20: 448–455.CrossRefGoogle Scholar
  113. 113.
    Heim, R., and Tsien, R. Y., 1996, Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer, Curr. Biol. 6: 178–182.CrossRefGoogle Scholar
  114. 114.
    Petushkov, V. N., Gibson, B. G., and Lee, J., 1995, Properties of recombinant fluorescent proteins from Photobacterium leiognathi and their interaction with luciferase intermediates, Biochemistry 34: 3300–3309.CrossRefGoogle Scholar
  115. 115.
    Li, L., Murphy, J. T., and Lagarias, J. C., 1995, Continuous fluorescence assay of phytochrome assembly in vitro, Biochemistry 34: 7923–7930.CrossRefGoogle Scholar
  116. 116.
    Murphy, J. T., and Lagarias, J. C., 1997, Purification and characterization of recombinant affinity peptide-tagged oat phytochrome A, Photochem. Photobiol. 65: 750–758.CrossRefGoogle Scholar
  117. 117.
    Murphy, J. T., and Lagarias, J. C., 1997, The phytofluors: A new class of fluorescent protein probes, Curr. Biol. 7: 870–876.CrossRefGoogle Scholar
  118. 118.
    Davenport, L., and Targowski, P., 1996, Submicrosecond phospholipid dynamics using a long lived fluorescence emission anisotropy probe, Biophys. J. 71: 1837–1852.CrossRefGoogle Scholar
  119. 119.
    Davenport, L., 1994, Fluorescent phospholipid analogs and fatty acid derivatives, U.S. patent 5,332, 794, pp. 1–14.Google Scholar
  120. 120.
    Richardson, F. S., 1982, Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems, Chem.Google Scholar
  121. Rev.82:541–552.Google Scholar
  122. 121.
    Sabbatini, N., and Guardigli, M., 1993, Luminescent lanthanide complexes as photochemical supramolecular devices, Coord. Chem. Rev. 123: 201–228.CrossRefGoogle Scholar
  123. 122.
    Balzani, V., and Ballardini, R., 1990, New trends in the design of luminescent metal complexes, Photochem. Photobiol. 52: 409416.Google Scholar
  124. 123.
    Li, M., and Selvin, P. R., 1995, Luminescent polyaminocarboxylate chelates of terbium and europium: The effect of chelate structure, J. Am. Chem. Soc. 117: 8132–8138.CrossRefGoogle Scholar
  125. 124.
    Martin, R. B., and Richardson, F. S., 1979, Lanthanides as probes for calcium in biological systems, Q. Rev. Biophys. 12: 181–209.CrossRefGoogle Scholar
  126. 125.
    Bruno, J., Horrocks, W. De W., and Zauhar, R. J., 1992, Europium(III) luminescence and tyrosine to terbium(III) energy transfer studies of invertebrate (octopus) calmodulin, Biochemistry 31: 7016–7026.CrossRefGoogle Scholar
  127. 126.
    Horrocks, W. DeW., and Sudnick, D. R., 1981, Lanthanide ion luminescence probes of the structure of biological macromolecules, Acc. Chem. Res. 14: 384–392.CrossRefGoogle Scholar
  128. 127.
    Lumture, J. B., and Wensel, T. G., 1993, A novel reagent for labelling macromolecules with intensity luminescent lanthanide complexes, Tetrahedron Lett. 34: 4141–4144.CrossRefGoogle Scholar
  129. 128.
    Lamture, J. B., and Wensel, T. G., 1995, Intensely luminescent immunoreactive conjugates of proteins and dipicolinate-based polymeric Tb(III) chelates, Bioconjug. Chem. 6: 88–92.CrossRefGoogle Scholar
  130. 129.
    Lövgren, T., and Pettersson, K., 1990, Time-resolved fluoroimmunoassay, advantages and limitations, in Luminescence Immunoassay and Molecular Applications, K. Van Dyke and R. Van Dyke (eds.), CRC Press, Boca Raton, Florida, pp. 233–253.Google Scholar
  131. 130.
    Hemmila, I., 1993, Progress in delayed fluorescence immunoassay, in Fluorescence Spectroscopy, New Methods and Applications, O. S. Wollbeis (ed.), Springer-Verlag, New York, pp. 259–266.CrossRefGoogle Scholar
  132. 131.
    Terpetschnig, E., Szmacinski, H., and Lakowicz, J. R., 1997, Long lifetime metal—ligand complexes as probes in biophysics and clinical chemistry, Methods Enzymol. 278: 295–321.CrossRefGoogle Scholar
  133. 132.
    Szmacinski, H., Terpetschnig, E., and Lakowicz, J. R., 1996, Synthesis and evaluation of Ru-complexes as anisotropy probes for protein hydrodynamics and immunoassays of high molecular-weight antigens, Biophys. Chem. 62: 109–120.CrossRefGoogle Scholar
  134. 133.
    Guo, X.-Q., Castellano, F N., Li, L., and Lakowicz, J. R., 1998, Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular weight analytes, Anal. Chem. 70: 632–637.CrossRefGoogle Scholar
  135. 134.
    Friedman, A. E., Chambron, J.-C., Sauvage, J.-P., Turro, N. J., and Barton, J. K., 1990, Molecular light switch for DNA Ru(bp)1)2(dppz)2+, J. Am. Chem. Soc. 112: 4960–4962.CrossRefGoogle Scholar
  136. 135.
    Hag, I., Lincoln, P., Suh, D., Norden, B., Chowdhry, B. Z., and Chaires, J. B., 1995, Interaction of 0- and A-[Ru(phen)2DPPZ]2+ with DNA: A calorimetric and equilibrium binding study, J. Am. Chem. Soc. 117: 4788–4796.CrossRefGoogle Scholar
  137. 136.
    Demas, J. N., and De Graff, B. A., 1992, Applications of highly luminescent transition metal complexes in polymer systems, Macromol. Chem. Macromol. Symp. 59: 35–51.CrossRefGoogle Scholar
  138. 137.
    Li, L., Szmacinski, H., and Lakowicz, J. R., 1997, Long-lifetime lipid probe containing a luminescent metal—ligand complex, Biospectroscopy 3: 155–159.CrossRefGoogle Scholar
  139. 138.
    Giuliano, K. A., Post, P. L., Hahn, K. M., and Taylor, D. L., 1995, Fluorescent protein biosensors: Measurement of molecular dynamics in living cells, Annu. Rev. Biophys. Biomol. Struct. 24: 405–434.CrossRefGoogle Scholar
  140. 139.
    Marvin, J. S., Corcoran, E. E., Hattangadi, N. A., Zhang, J. V., Gere, S. A., and Hellinga, H. W., 1997, The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors, Proc. Natl. Acad. Sci. U.S.A. 94: 4366–4371.CrossRefGoogle Scholar
  141. 140.
    Stewart, J. D, Roberts, V. A., Crowder, M. W., Getzoff, E. D., and Benkovic, S. J., 1994, Creation of a novel biosensor for Zn(II), J. Am. Chem. Soc. 116: 415–416.CrossRefGoogle Scholar
  142. 141.
    Walkup, G. K., and Imperiali, B., 1996, Design and evaluation of a peptidyl fluorescent chemosensor for divalent zinc, J. Am. Chem. Soc. 118: 3053–3054.CrossRefGoogle Scholar
  143. 142.
    Illsley, N. P., and Verkman, A. S., 1987, Membrane chloride transport measured using a chloride-sensitive fluorescent probe, Biochemistry 26: 1215–1219.CrossRefGoogle Scholar
  144. 143.
    Kao, J. P. Y., 1994, Practical aspects of measuring [Call] with fluorescent indicators. in Methods in Cell Biology, Vol. 40, R. Nuccitelli (ed.), Academic Press, New York, pp. 155–181.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations