Skip to main content

Instrumentation for Fluorescence Spectroscopy

  • Chapter
Principles of Fluorescence Spectroscopy

Abstract

The successful application of fluorescence methods requires considerable attention to experimental details and a good understanding of the instrumentation. There are numerous potential artifacts which can distort the data. Fluorescence is a highly sensitive method. The gain or amplification of the instruments can usually be increased to obtain observable signals, even if the sample is nonfluorescent. These signals seen at high amplification may not originate with the fluorophore of interest. Instead, one may observe interference due to background fluorescence from the solvents, light leaks in the instrumentation, stray light passing through the optics, light scattered by turbid solutions, Rayleigh scatter, and/or Raman scatter, to name a few sources of interference. Furthermore, there is no ideal spectrofluorometer, and the available instruments do not yield true excitation or emission spectra. This is because of the nonuniform spectral output of the light sources and the wavelength-dependent efficiency of the monochromators and detectors (photomultiplier tubes). The polarization or anisotropy of the emitted light can also affect the measured fluorescence intensities. To obtain reliable spectral data, one needs to be aware of and control these numerous factors. In this chapter we will discuss the properties of the individual components in a spectrofluorometer and how these properties affect the observed spectral data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Technical Literature, Oriel Instruments, 250 Long Beach Blvd., PO Box 872, Stratford, CT 06497.

    Google Scholar 

  2. Laczko, G., and Lakowicz, J. R., unpublished observations.

    Google Scholar 

  3. Light Sources, Monochromators & Spectrographs, Detectors & Detection Systems, Fiber Optics, Oriel Corporation, 250 Long Beach Blvd., PO Box 872, Stratford, CT 06497.

    Google Scholar 

  4. Cermax Product Specifications for Collimated and Focused Xenon Lamps, ILC Technology, Inc., 399 West Joan Drive, Sunnyvale, CA 94089.

    Google Scholar 

  5. Analamp Emission Data Sheet, BHK, Inc. (Subsidiary of Hamamatsu Corporation), 1000 S. Magnolia Ave., Monrovia, CA 91016.

    Google Scholar 

  6. Sipior, J., Carter, G. M., Lakowicz, J. R., and Rao, G., 1997, Blue light-emitting diode demonstrated as an ultraviolet excitation source for nanosecond phase-modulation fluorescence lifetime measurements, Rev. Sci. Instrum. 68: 2666 – 2670.

    Article  CAS  Google Scholar 

  7. 1996 Catalog of Optical Components and Instruments, Optometrics USA, Inc., Nemco Way, Stony Brook Industrial Park, Ayer, MA 01432.

    Google Scholar 

  8. Gryczynski, I., and Lakowicz, J. R., unpublished observations.

    Google Scholar 

  9. Castellano, P., and Lakowicz, J. R., unpublished observations.

    Google Scholar 

  10. Technical Literature, Spindler & Hoyer, Inc., 459 Fortune Blvd., Milford, MA 01757.

    Google Scholar 

  11. Flaugh, P. L., O'Donnell, S. E., and Asher, S. A., 1984, Development of a new optical wavelength rejection filter: Demonstration of its utility in Raman spectroscopy, Appl. Spectrosc. 386: 847 – 850.

    Article  Google Scholar 

  12. Gryczynski, I., Malak, H., Lakowicz, J. R., Cheung, H. C., Robinson, J., and Umeda, P. K., 1996, Fluorescence spectral properties of troponin C mutant F22W with one-, two-and three-photon excitation, Biophys. J. 71: 3448 – 3453.

    Article  CAS  Google Scholar 

  13. Szmacinski, H., Gryczynski, I., and Lakowicz, J. R., 1993, Calcium-dependent fluorescence lifetimes of Indo-1 for one-and two-photon excitation of fluorescence, Photochem. Photobiol. 58: 341 – 345.

    Article  CAS  Google Scholar 

  14. Photomultiplier Tubes, Hamamatsu Photonics K.K., Electron Tube Center, (1994), 314-5, Shimokanzo, Toyooka-village, Iwata-gun, Shizuoka-ken, 438–01 Japan.

    Google Scholar 

  15. Leaback, D. H., 1997, Extended theory, and improved practice for the quantitative measurement of fluorescence, J. Fluoresc. 7 (1): 55S – 57S.

    Article  CAS  Google Scholar 

  16. Hiraoka, Y., Sedat, J. W., and Agard, D. A., 1987, The use of a charge-coupled device for quantitative optical microscopy of biological structures, Science 238: 36 – 41.

    Article  CAS  Google Scholar 

  17. Aikens, R. S., Agard, D. A., and Sedat, J. W., 1989, Solid-state imagers for microscopy, Methods Cell Biol. 29: 291 – 313.

    Article  CAS  Google Scholar 

  18. Epperson, P. M., and Denton, M. B., 1989, Binding spectral images in a charge-coupled device, Anal. Chem. 61: 1513 – 1519.

    Article  CAS  Google Scholar 

  19. Bilhorn, R. B., Sweedler, J. V., Epperson, R M., and Denton, M. B., 1987, Charge transfer device detectors for analytical optical spectroscopy-operation and characteristics, Appl. Spectrosc. 41: 1114 – 1124.

    Article  CAS  Google Scholar 

  20. Epperson, P. M., Jalkaian, R. D., and Denton, M. B., 1989, Molecular fluorescence measurements with a charge-coupled device detector, Anal. Chem. 61: 282 – 285.

    Article  CAS  Google Scholar 

  21. Melhuish, W. H., 1962, Calibration of spectrofluorometers for measuring corrected emission spectra, J. Opt. Soc. Am. 52: 1256 – 1258.

    Article  CAS  Google Scholar 

  22. Yguerabide, J., 1968, Fast and accurate method for measuring photon flux in the range 2500-6000 A, Rev. Sci. Instrum. 397: 1048 – 1052.

    Google Scholar 

  23. Mandal, K., Pearson, T. D. L., and Demas, J. N., 1980, Luminescent quantum counters based on organic dyes in polymer matrices, Anal. Chem. 52: 2184 – 2189.

    Article  CAS  Google Scholar 

  24. Mandat, K., Pearson, T. D. L., and Demas, N. J., 1981, New luminescent quantum counter systems based on a transition-metal complex, Inorg. Chem. 20: 786 – 789.

    Article  Google Scholar 

  25. Nothnagel, E. A., 1987, Quantum counter for correcting fluorescence excitation spectra at 320- and 800-nm wavelengths, Anal. Biochem. 163: 224 – 237.

    Article  CAS  Google Scholar 

  26. Lippert, E., Nagelle, W., Siebold-Blakenstein, I., Staiger, U., and Voss, W., 1959, Messung von fluorescenzspektren mit hilfe von spektralphotometern und vergleichsstandards, Z Anal. Chem. 17:1– 18.

    Google Scholar 

  27. Schmillen, A., and Legler, R., 1967, Landoll-Bornstein, Vol. 3, Lumineszenz Organischer Substanzen, Springer-Verlag, New York, pp. 228 – 229.

    Google Scholar 

  28. Argauer, R. J., and White, C. E., 1964, Fluorescent compounds for calibration of excitation and emission units of spectrofluorometer, Anal. Chem. 36: 368 – 371.

    Article  CAS  Google Scholar 

  29. Melhuish, W. H., 1960, A standard fluorescence spectrum for calibrating spectrofluorometers, J. Phys. Chem. 64: 762 – 764.

    Article  CAS  Google Scholar 

  30. Parker, C. A., 1962, Spectrofluorometer calibration in the ultraviolet region, Anal. Chem. 34: 502 – 505.

    Article  CAS  Google Scholar 

  31. Velapoldi, R. A., 1973, Considerations on organic compounds in solution and inorganic ions in glasses as fluorescent standard reference materials, Proc. Natl. Bur. Stand. 378: 231 – 244.

    Google Scholar 

  32. Pardo, A., Reyman, D., Poyato, J. M. L., and Medina, E, 1992, Some (ì-carboline derivatives as fluorescence standards, J. Lumin. 51: 269274.

    Google Scholar 

  33. Chen, R. F., 1967, Some characteristics of the fluorescence of quinine, Anal. Biochem. 19: 374 – 387.

    Article  CAS  Google Scholar 

  34. Verity, B., and Bigger, S. W., 1996, The dependence of quinine fluorescence quenching on ionic strength, Int. J. Chem. Kinet. 2812: 919 – 923.

    Article  Google Scholar 

  35. Ghiggino, K. P., Ski1ton, P. F., and Thistlethwaite, P. J., 1985, (i-Carboline as a fluorescence standard, J. Photochem. 31: 113 – 121.

    Google Scholar 

  36. Middleton, W. E. K., and Sanders, C. L., 1951, The absolute spectral diffuse reflectance of magnesium oxide, J. Opt. Soc. Am. 41(6): 419–424.

    Google Scholar 

  37. Heller, C. A., Henry, R. A., McLaughlin, B. A., and Bliss, D. E., 1974, Fluorescence spectra and quantum yields: Quinine, uranine, 9,10-diphenylanthracene, and 9,10–bis(phenylethynyl)anthracenes, J. Chem. Eng. Data 19 (3): 214 – 219.

    Article  CAS  Google Scholar 

  38. Melhuish, W. H., 1972, Absolute spectrofluorometry, J. Res. of the National Bureau of Standards 76A: 547 – 560.

    Article  CAS  Google Scholar 

  39. Tazuke, S., and Winnik, M. A., 1986, Fluorescence and phosphorescence spectroscopy in polymer systems: A general introduction, in Photophysical and Photochemical Tools in Polymer Science, M. A. Winnik (ed.), D. Reidel, Dordrecht, pp. 15 – 42.

    Chapter  Google Scholar 

  40. Demas, J. N., and Crosby, G. A., 1971, The measurement of photoluminescence quantum yields. A review, J. Phys. Chem. 75: 991 1025.

    Google Scholar 

  41. Birks, J. B., 1970, Photophysics of Aromatic Molecules, Wiley-Interscience, New York, p. 98.

    Google Scholar 

  42. Hermans, J. J., and Levinson, S., 1951, Some geometrical factors in light-scattering apparatus, J. Opt. Soc. Am. 41 (7): 460 – 465.

    Article  Google Scholar 

  43. Eastman, J. W., 1967, Quantitative spectrofluorimetry—the fluorescence quantum yield of quinine sulfate, Photochem. Photobiol. 6: 55 – 72.

    Article  CAS  Google Scholar 

  44. Adams, M. J., Highfield, J. G., and Kirkbright, G. E, 1977, Determination of absolute fluorescence quantum efficiency of quinine bisulfate in aqueous medium by optoacoustic spectrometry, Anal. Chem. 49: 1850 – 1852.

    Article  CAS  Google Scholar 

  45. Brannon, J. H., and Magde, D., 1978, Absolute quantum yield determination by thermal blooming. Fluorescein, J. Phys. Chem. 82: 705 – 709.

    Article  CAS  Google Scholar 

  46. Mardelli, M., and Olmsted, J., 1977, Calorimetric determination of the 9,10-diphenyl-anthracene fluorescence quantum yield, J. Photochem. 7: 277 – 285.

    Article  CAS  Google Scholar 

  47. Ware, W. R., and Rothman, W., 1976, Relative fluorescence quantum yields using an integrating sphere. The quantum yield of 9,10diphenylanthracene in cyclohexane, Chem. Phys. Lett. 39: 449 – 453.

    Article  CAS  Google Scholar 

  48. Testa, A. C., 1969, Fluorescence quantum yields and standards, Fluorescence News; Newsletter on Luminescence 4 (4): 1 – 3.

    CAS  Google Scholar 

  49. Rusakowicz, R., and Testa, A. C., 1968, 2–Aminopyridine as a standard for low-wavelength spectrofluorometry, J. Phys. Chem. 72: 2680 – 2681.

    Google Scholar 

  50. Chen, R. E, 1967, Fluorescence quantum yields of tryptophan and tyrosine, Anal. Lett. 1: 35 – 42.

    Article  CAS  Google Scholar 

  51. Fischer, M., and Georges, J., 1996, Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry, Chem. Phys. Lett. 260: 115 – 118.

    Article  CAS  Google Scholar 

  52. Karstens, T., and Kobe, K., 1980, Rhodamine B and Rhodamine 101 as reference substances for fluorescence quantum yield measurements, J. Phys. Chem. 84: 1871 – 1872.

    Article  CAS  Google Scholar 

  53. Magde, D., Brannon, J. H., Cremers, T. L., and Olmsted, J., 1979, Absolute luminescence yield of cresyl violet. A standard for the red, J. Phys. Chem. 83: 696 – 699.

    Article  CAS  Google Scholar 

  54. Kubista, M., Sjöback, R., Eriksson, S., and Albinsson, B., 1994, Experimental correction for the inner-filter effect in fluorescence spectra, Analyst 119: 417 – 419.

    Article  CAS  Google Scholar 

  55. Yappert, M. C., and Ingle, J. D., 1989, Correction of polychromatic luminescence signals for inner-filter effects, Appl. Spectrosc. 43: 759 – 767.

    Article  CAS  Google Scholar 

  56. Wiechelman, K. J., 1986, Empirical correction equation for the fluorescence inner filter effect, Am. Lab. 18: 49 – 53.

    CAS  Google Scholar 

  57. Puchalski, M. M., Mora, M. J., and von Wandruszka, R., 1991, Assessment of inner filter effect corrections in fluorimetry, Fresenius J. Anal. Chem. 340: 341 – 344.

    Article  CAS  Google Scholar 

  58. Guilbault, G. G. (ed.), 1990, Practical Fluorescence, Marcel Dekker, New York, p. 31.

    Google Scholar 

  59. Eisinger, J., 1969, A variable temperature, U.V. luminescence spectrograph for small samples, Photochem. Photobiol. 9: 247 – 258.

    Article  CAS  Google Scholar 

  60. Eisinger, J., and Flores, J., 1979, Front-face fluorometry of liquid samples, Anal. Biochem. 94: 15 – 21.

    Article  CAS  Google Scholar 

  61. Berlman, I. B., 1971, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed., Academic Press, New York.

    Google Scholar 

  62. Kasha, M., 1960, Paths of molecular excitation, Radiat. Res. 2: 243–275.

    Google Scholar 

  63. Gryczynski, I., unpublished observations.

    Google Scholar 

  64. Lakowicz, J. R., Gryczynski, I., Kulba, J., and Danielsen, E., 1992, Two photon induced fluorescence intensity and anisotropy decays of diphenylhexatriene in solvents and lipid bilayers, J. Fluoresc. 2 (4): 247 – 258.

    Article  CAS  Google Scholar 

  65. Xu, C., and Webb, W. W., 1997, Multiphoton excitation of molecular fluorophore and nonlinear laser microscopy, in Topics in Fluorescence Spectroscopy, Volume 5, Nonlinear and Two-Photon-Induced Fluorescence, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 471 – 540.

    Google Scholar 

  66. Callis, P. R., 1997, Two-photon induced fluorescence, Annu. Rev. Phys. Chem. 48: 271 – 297.

    Article  CAS  Google Scholar 

  67. Bowman, R. L., Caulfield, P. A., and Udenfriend, S., 1955, Spectrophotofluorometric assay in the visible and ultraviolet, Science 122: 32 – 33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). Instrumentation for Fluorescence Spectroscopy. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics