Skip to main content

Abstract

During the past 12 years, there have been remarkable advances in the use of fluorescence to study DNA. Fluorescence methods are now used for DNA sequencing, detection of DNA hybridization and restriction enzyme fragments, fluorescence in situ hybridization (FISH), and quantitating polymerase chain reaction products. Because of the rapid introduction of new DNA technology, it is surprising to realize that DNA sequencing by fluorescence was first reported just 12 years ago, in 1986. It is not the purpose of this chapter to describe the many specialized methods used in this extensive area of molecular biology and diagnostics. Instead, we give a brief introduction to each topic, followed by a description of the unique fluorophores and principles used for each application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maxam, A. M., and Gilbert, W., 1977, A new method for sequencing DNA, Proc. Natl. Acad. Sci. U.S.A. 74: 560–564.

    Article  CAS  Google Scholar 

  2. Maxam, A. M., and Gilbert, W., 1980, Sequencing end-labeled DNA with base-specific chemical cleavage, Methods Enzymol. 65: 499–560.

    Article  CAS  Google Scholar 

  3. Sanger, F., Nicklen, S., and Coulson, A. R., 1977, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sei. U.S.A. 74: 5463–5467.

    Article  CAS  Google Scholar 

  4. Watson, J. D., Gilman, M., Witkowski, J., and Zoller, M., 1992, Recombinant DNA, 2nd ed., Scientific American Books, New York.

    Google Scholar 

  5. Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C., Connell, C. R., Heiner, C., Kent. S. B. H., and Hood, L. E., 1986, Fluorescence detection in automated DNA sequence analysis, Nature 321: 674–679.

    CAS  Google Scholar 

  6. Prober, J. M., Trainor, G. L., Dam, R. J., Hobbs, F. W., Robertson, C. W., Zagursky, R. J., Cocuzza, A. J., Jensen, M. A., and Baumeister, K., 1987, A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides, Science 238: 336–343.

    Article  CAS  Google Scholar 

  7. Ansorge, W., Sproat, B. S., Stegemann, J., and Schwager, C., 1986, A non-radioactive automated method for DNA sequence determination, J. Biochem. Biophys. Methods 13: 315–323.

    Article  CAS  Google Scholar 

  8. Flick, P. K., 1995, DNA sequencing by nonisotopic methods, in Nonisotopic Probing, Blotting, and Sequencing, J. J. Kricka (ed.), Academic Press, New York, pp. 475–492.

    Google Scholar 

  9. Dhadwal, H. S., Quesada, M. A., and Studier, F. W., 1997, DNA sequencing by multiple capillaries that form a waveguide, Proc. SPIE 2890: 149–162.

    Article  Google Scholar 

  10. Hunkapiller, T., Kaiser, R. J., Koop, B. F., and Hood, L., 1991, Large-scale and automated DNA sequence determination, Science 254: 59–67.

    Article  CAS  Google Scholar 

  11. Zimmermann, J., Wiemann, S., Voss, H., Schwager, C., and Ansorge, W., 1994, Improved fluorescent cycle sequencing protocol allows reading nearly 1000 bases, Biotechniques 17 (2): 302–307.

    CAS  Google Scholar 

  12. Ansorge, W., Sproat, B., Stegermann, J., Schwager, C, and Zenke, M., 1987, Automated DNA sequencing: Ultrasensitive detection of fluorescent bands during electrophoresis, Nucleic Acids Res. 15: 4593–4602.

    Article  CAS  Google Scholar 

  13. Brumbaugh, J. A., Middendorf, L. R., Grone, D. L., and Ruth, J. L., 1988, Continuous on-line DNA sequencing using oligodeoxynu-cleotide primers with multiple fluorophores, Proc. Natl. Acad. Sei U.S.A. 85: 5610–5614.

    Article  CAS  Google Scholar 

  14. Ju, J., Ruan, C., Fuller, C. W., Glazer, A. N., and Mathies, R. A., 1995, Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis, Proc. Natl. Acad. Sei, U.S.A. 92: 4347–4351.

    Article  CAS  Google Scholar 

  15. Ju, J., Glazer, A. N., and Mathies, R. A., 1996, Energy transfer primers: A new fluorescence labeling paradigm for DNA sequencing and analysis, Nat. Med. 2 (2): 246–249.

    Article  CAS  Google Scholar 

  16. Takahashi, S., Murakami, K., Anazawa, T., and Kambara, H., 1994, Multiple sheath-flow gel capillary-array electrophoresis for multicolor fluorescent DNA detection, Anal. Chem. 66: 1021–1026.

    Article  CAS  Google Scholar 

  17. Ju, J., Kheterpal, I., Scherer, J. R., Ruan, C., Fuller, C. W., Glazer, A. N., and Mathies, R. A., 1995, Design and synthesis of fluorescence energy transfer dye-labeled primers and their application for DNA sequencing and analysis, Anal. Biochem. 231: 131–140.

    Article  CAS  Google Scholar 

  18. Metzker, M. L., Lu, J., and Gibbs, R. A., 1996, Electrophoretically uniform fluorescent dyes for automated DNA sequencing, Science 271: 1420–1422.

    Article  CAS  Google Scholar 

  19. Middendorf, L. R., Bruce, J. C., Bruce, R. C., Eckles, R. D., Roemer, S. C., and Sloniker, G. D., 1993, A versatile infrared laser scan-ner/electrophoresis apparatus, Proc. SPIE 1885: 423–434.

    Article  CAS  Google Scholar 

  20. Soper, S. A., Flanagan, J. H., Legendre, B. L., Williams, D. C., and Hammer, R. P., 1996, Near-infrared, laser-induced fluorescence detection for DNA sequencing applications, IEEE J. Sei. Top. Quantum Electron. 2 (4): 1–11.

    Google Scholar 

  21. Shealy, D. B., Lipowska, M., Lipowski, J., Narayanan, N., Sutter, S., Strekowski, L., and Patonay, G., 1995, Synthesis, chromatographic

    Google Scholar 

  22. separation, and characterization of near-infrared labeled DNA oligomers for use in DNA sequencing, Anal. Chem. 67:247–251.

    Google Scholar 

  23. Williams, D. C., and Soper, S. A., 1995, Ultrasensitive near-IR fluorescence detection for capillary gel electrophoresis and DNA sequencing applications, Anal. Chem. 67: 3427–3432.

    Article  CAS  Google Scholar 

  24. Middendorf, L., Amen, J., Bruce, B., Draney, D., DeGraff, D., Gewecke, J., Grone, D., Humphrey, P., Little, G., Lugade, A., Narayanan, N., Oommen, A., Osterman, H., Peterson, R., Rada, J., Raghavachari, R., and Roemer, S., 1998, Near-infrared fluorescence instrumentation for DNA analysis, S. Daehne et al. (eds.), Near-Infrared Dyes for High Technology Applications, 21–54. © 1998 Kluwer Academic Publishers. Printed in the Netherlands.

    Google Scholar 

  25. Middendorf, L. R., Bruce, J. C., Bruce, R. C., Eckles, R. D., Grone, D. L., Roemer, S. C., Sloniker, G. D., Steffens, D. L., Sutter, S. L., Brumbaugh, J. A., and Patonay, G., 1992, Continuous, on-line DNA sequencing using a versatile infrared laser scanner/electrophoresis apparatus, Electrophoresis 13: 487–494.

    Article  CAS  Google Scholar 

  26. Middendorf, L., Bruce, R., Brumbaugh, J., Grone, D., Jang, G., Richterich, P., Holtke, H. J., Williams, R. J., and Peralta, J. M., 1995, A two-dimensional infrared fluorescence scanner used for DNA analysis, Proc. SPIE 2388: 44–54.

    Article  CAS  Google Scholar 

  27. Han, K.-T., Sauer, M., Schulz, A., Seeger, S., and Wolfram, J., 1993, Time-resolved fluorescence studies of labelled nucleosides, Ber. Bunsenges. Phys. Chem. 97: 1728–1730.

    Article  CAS  Google Scholar 

  28. Legendre, B. L., Williams, D. C., Soper, S. A., Erdmann, R., Ort-mann, U., and Enderlein, J., 1996, An all solid-state near-infrared time-correlated single photon counting instrument for dynamic lifetime measurements in DNA sequencing applications, Rev. Sei. Instrum. 67: 3984–3989.

    Article  CAS  Google Scholar 

  29. Chang, K., and Force, R. K., 1993, Time-resolved laser-induced fluorescence study on dyes used in DNA sequencing, Appl. Spec-trosc. 47: 24–29.

    Article  CAS  Google Scholar 

  30. Sauer, M., Han, K.-T., Ebert, V., Müller, R. Schulz, A., Seeger, S., and Wolfram, J., 1994, Design of multiplex dyes for the detection of different biomolecules, Proc. SPIE 2137: 762–774.

    Google Scholar 

  31. Li, L.-C., He, H., Nunnally, B. K., and McGown, L. B., 1997, On-the-fly fluorescence lifetime detection of labeled DNA primers, J. Chromatogr. 695: 85–92.

    Article  CAS  Google Scholar 

  32. Li, L.-C., and McGown, L. B., 1996, On-the-fly frequency-domain fluorescence lifetime detection in capillary electrophoresis, Anal. Chem. 68: 2737–2743.

    Article  CAS  Google Scholar 

  33. Le Pecq, J.-B., and Paoletti, C., 1967, A fluorescent complex between ethidium bromide and nucleic acids, J. Mol. Biol. 27: 87–106.

    Article  Google Scholar 

  34. Le Pecq, J.-B., Le Bret, M., Barbet, J, and Roques, B., 1975, DNA polyintercalating drugs: DNA binding of diacridine derivatives, Proc. Natl. Acad. Sei. U.S.A. 72: 2915–2919.

    Article  Google Scholar 

  35. Markovits, J., Roques, B. P., and Le Pecq, J.B., 1979, Ethidium dimer. A new reagent for the fluorimetric determination of nucleic acids, Anal. Biochem. 94: 259–264.

    Article  CAS  Google Scholar 

  36. Glazer, A. N., Peck, K., and Mathies, R. A., 1990, A stable double-stranded DNA ethidium homodimer complex: Application to pi-cogram fluorescence detection of DNA in agarose gels, Proc. Natl. Acad. Sei. U.S.A. 87: 3851–3855.

    Article  CAS  Google Scholar 

  37. Rye, H. S., Yue, S., Wemmer, D. E., Quesada, M. A., Haugland, R. P., Mathies, R. A., and Glazer, A. N., 1992, Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: Properties and applications, Nucleic Acids Res. 20: 2803–2812.

    Article  CAS  Google Scholar 

  38. Abramo, K. H., Pitner, J. B., and McGown, L. B., 1997, Spectroscopic studies of single-stranded DNA ligands and oxazole yellow dyes, Biospectroscopy 4: 27–35.

    Article  Google Scholar 

  39. Nygren, J., Svanvik, N., and Kubista, M., 1998, The interactions between the fluorescent dye thiazole orange and DNA, Biopolymers 46: 39–51.

    Article  CAS  Google Scholar 

  40. Benson, S. C., Mathies, R. A., and Glazer, A. N., 1993, Heterodi-meric DNA-binding dyes designed for energy transfer: Stability and applications of the DNA complexes, Nucleic Acids Res. 21: 5720–5726.

    Article  CAS  Google Scholar 

  41. Benson, S. C., Zeng, Z., and Glazer, A. N., 1995, Fluorescence energy-transfer cyanine heterodimers with high affinity for double-stranded DNA, Anal. Biochem. 231: 247–255.

    Article  CAS  Google Scholar 

  42. Goodwin, P. M., Johnson, M. E., Martin, J. C., Ambrose, W. P., Marrone, B. L., Jett, J. H., and Keller, R. A., 1993, Rapid sizing of individual fluorescently stained DNA fragments by flow cytometry, Nucleic Acids Res. 21: 803–806.

    Article  CAS  Google Scholar 

  43. Petty, J. T., Johnson, M. E., Goodwin, P. M., Martin, J. C., Jett, J. H., and Keller, R. A., 1995, Characterization of DNA size determination of small fragments by flow cytometry, Anal. Chem. 67: 1755–1761.

    Article  CAS  Google Scholar 

  44. Huang, Z., Petty, J. T., O’Quinn, B., Longmire, J. L., Brown, N. C., Jett, J. H., and Keller, R. A., 1996, Large DNA fragment sizing by flow cytometry: Application to the characterization of PI artificial chromosome (PAC) clones, Nucleic Acids Res. 24: 4202–4209.

    Article  CAS  Google Scholar 

  45. Cardullo, R. A., Agrawal, S., Flores, C., Zamecnik, P. C., and Wolf, D. E., 1988, Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer, Prvc. Natl. Acad. Sci. U.S.A. 85: 8790–8794.

    Article  CAS  Google Scholar 

  46. Morrison, L. E., and Stols, L. M., 1993, Sensitive fluorescence-based thermodynamic and kinetic measurements of DNA hybridization in solution, Biochemistry 32: 3095–3104.

    Article  CAS  Google Scholar 

  47. Morrison, L. E., 1995, Detection of energy transfer and fluorescence quenching, in Nonisotopic Probing, Blotting, and Sequencing, L. J. Kricka (ed.), Academic Press, New York, pp. 429–471.

    Google Scholar 

  48. Asseline, U., Toulme, F., Thuong, N. T., Delarue, M., Montenay- Garestier, T., and Helene, C., 1984, Oligodeoxynucleotides cova-lently linked to intercalating dyes as base sequence-specific ligands. Influence of dye attachment site, EMBO J. 3: 795–800.

    CAS  Google Scholar 

  49. Asseline, U., Delarue, M., Lancelot, G., Toulme, F., Thuong, N. T., Montenay-Garestier, T., and Helene, C., 1984, Nucleic acid-binding molecules with high affinity and base sequence specificity: Intercalating agents covalently linked to oligodeoxynucleotides, Proc. Natl. Acad. Sci. U.S.A. 81: 3297–3301.

    Article  CAS  Google Scholar 

  50. Hélène, C., Montenay-Garestier, T., Saison, T., Takasugi, M., Tolumé, Asseline, U., Lancelot, G., Maurizot, J. C., Tolumé, F., and Thuong, N. T., 1985, Oligodeoxynucleotides covalently linked to intercalating agents: A new class of gene regulatory substances, Biochime 67: 777–783.

    Google Scholar 

  51. Morrison, L. E., Haider, T. C., and Stols, L. M., 1989, Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization, Anal. Biochem. 188: 231–244.

    Article  Google Scholar 

  52. Parkhurst, K. M., and Parkhurst, L. J., 1996, Detection of point mutations in DNA by fluorescence energy transfer, J. Biomed. Opt. 1: 435–441.

    Article  CAS  Google Scholar 

  53. Ebata, K., Masuko, M., Ohtani, H., and Kashiwasake-Jibu, M., 1995, Nucleic acid hybridization accompanied with excimer formation from two pyrene-labeled probes, Photochem. Photobiol. 62: 836–839.

    Article  CAS  Google Scholar 

  54. Devlin, R., Studholme, R. M., Dandliker, W. B., Fahy, E., Blumeyer, K., and Ghosh, S. S., 1993, Homogeneous detection of nucleic acids by transient state polarized fluorescence, Clin. Chem. 39: 1939–1943.

    CAS  Google Scholar 

  55. Murakami, A., Nakaura, M., Nakatsuji, Y., Nagahara, S., Tran-Cong, Q., and Makino, K., 1991, Fluorescent-labeled oligonucleotide

    Google Scholar 

  56. probes: Detection of hybrid formation in solution by fluorescence polarization spectroscopy, Nucleic Acids Res. 19: 4097–4102.

    Google Scholar 

  57. Kumke, M. U., Shu, L., McGown, L. B., Walker, G. T., Pitner, J. B., and Linn, C. P., 1997, Temperature and quenching studies of fluorescence polarization detection of DNA hybridization, Anal. Chem. 69: 500–506.

    Article  CAS  Google Scholar 

  58. Livak, K. J., Flood, S. J. A., Marmaro, J., Giusti, W., and Deetz, K., 1995, Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization, PCR Methods Appli. 4: 357–362.

    Article  CAS  Google Scholar 

  59. Gibson, U. E. M., Heid, C. A., and Williams, P. M., 1996, A novel method for real time quantitative RT-PCR, Genome Res. 6:995-1001.

    Google Scholar 

  60. Steffens, D. L., Jang, G. Y., Sutter, S. L., Brumbaugh, J. A., Middendorf, L. R., Muhlegger, K., Mardis, E. R., Weinstock, L. A., and Wilson, R. K., 1995, An infrared fluorescent dATP for labeling DNA, Genome Res. 5: 393–399.

    Article  CAS  Google Scholar 

  61. Wittwer, C. T., Herrmann, M. G., Moss, A. A., and Rasmussen, R. P., 1997, Continuous fluorescence monitoring of rapid cycle DNA amplification, BioTechniques 22 (1): 130–138.

    CAS  Google Scholar 

  62. Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T., Holmes, C. P., and Fodor, S. P. A., 1994, Light-generated oligonucleotide arrays for rapid DNA sequence analysis, Proc. Natl. Acad. Sci. U.S.A. 91: 5022–5026.

    Article  CAS  Google Scholar 

  63. Lipshutz, R. J., Morris, D., Chee, M., Hubbell, E., Kozal, M. J., Shah, N., Shen, N., Yang, R., and Foder, S. P. A., 1995, Using oligonucleotide probe arrays to access genetic diversity, BioTechniques 19: 442–447.

    CAS  Google Scholar 

  64. Cronin, M. T., Fucini, R. V., Kim, S. M., Masino, R. S., Wespi, R. M., and Miyada, C. G., 1996, Cystic fibrosis mutation detection by hybridization to light-generated DNA probe arrays, Hum. Mutat. 7: 244–255.

    Article  CAS  Google Scholar 

  65. Polak, J. M., and McGee, J. O’D., 1990, In Situ Hybridization, Principles and Practice, Oxford University Press, New York.

    Google Scholar 

  66. Wiegant, J., Wiesmeijer, C. C., Hoovers, J. M. N., Schuuring, E., d’Azzo, A., Vrolijk, J., Tanke, H. J., and Raap, A. K., 1993, Multiple and sensitive fluorescence in situ hybridization with rhodamine-, fluorescein-, and coumarin-labeled DNAs, Cytogenet. Cell Genet. 63: 73–76.

    Article  CAS  Google Scholar 

  67. Schröck, E., du Manoir, S., Veldman, T., Schoell, B., Wienberg, J., Ferguson-Smith, M. A., Ning, Y., Ledbetter, D. H., Bar-Am, I., Soenksen, D., Garini, Y., and Reid, T., 1996, Multicolor spectral karyotyping of human chromosomes, Science 273: 494–497.

    Article  Google Scholar 

  68. Speicher, M. R., Ballard, S. G., and Ward, D. C., 1996, Karyotyping human chromosomes by combinatorial multi-fluor FISH, Nat. Genet. 12: 368–378.

    Article  CAS  Google Scholar 

  69. Nederlof, P. M., van der Flier, S., Wiegant, J., Raap, A. K., Tanke, H. J., Ploem, J. S., and van der Ploeg, M., 1990, Multiple fluorescence in situ hybridization, Cytometry 11: 126–131.

    Article  CAS  Google Scholar 

  70. Kallioniemi, A., Kallioniemi, O. P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman, F., and Pinkel, D., 1992, Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors, Science 258: 818–821.

    Article  CAS  Google Scholar 

  71. Lewis, R., 1996, Chromosome charting takes a giant step, Photonics Spectra 1996 (June): 48–49.

    Google Scholar 

  72. Le Beau, M. M., 1996, One FISH, two FISH, red FISH, blue FISH, Nat. Genet. 12: 341–344.

    Article  Google Scholar 

  73. Speicher, M. R., and Ward, D. C., 1996, The coloring of cytogenetics, Nat. Med. 2: 1046–1048.

    Article  CAS  Google Scholar 

  74. Bentz, M., Döhner, H., Cabot, G., and Lichter, P., 1994, Fluorescence in situ hybridization in leukemias: The FISH are spawning, Leuke-mia 8: 1447–1452.

    CAS  Google Scholar 

  75. Fox, J. L., Hsu, P.-H., Legator, M. S., Morrison, L. E., and Seelig, S. A., 1995, Fluorescence in situ hybridization: Powerful molecular tool for cancer prognosis, Clin. Chem. 41: 1554–1559.

    CAS  Google Scholar 

  76. Popescu, N. C., and Zimonjic, D. B., 1997, Molecular cytogenetic characterization of cancer cell alterations, Cancer Genet. Cytogenet. 93: 10–21.

    Article  CAS  Google Scholar 

  77. Swiger, R. R., and Tucker, J. D., 1996, Fluorescence in situ hybridization, Environ. Mol. Mutagenesis 27: 245–254.

    Article  CAS  Google Scholar 

  78. Siadat-Pajouh, M., Periasamy, A., Ayscue, A. H., Moscicki, A. B., Palefsky, J. M., Walton, L., DeMars, L. R., Power, J. D., Herman, B., and Lockett, S. J., 1994, Detection of human papillomavirus type 16/18 DNA in cervicovaginal cells by fluorescence based in situ hybridization and automated image cytometry, Cytometry 15: 245–257.

    Article  CAS  Google Scholar 

  79. Pandya, P. P., Cardy, D. L. N„ Jauniaux, E., Campbell, S., and Nicolaides, K. H., 1994, Rapid determination of fetal sex in coelomic and amniotic fluid by fluorescence in situ hybridization, Fetal Di-agn. Ther. 10: 66–70.

    Google Scholar 

  80. Matthews, J. A., and Kricka, L. J., 1988, Analytical strategies for the use of DNA probes, Anal. Biochem. 169: 1–25.

    Article  CAS  Google Scholar 

  81. Nazarenko, I. A., Bhatnagar, S. K., and Hohman, R. J., 1997, A closed tube format for amplification and detection of DNA based on energy transfer, Nucleic Acids Res. 25: 2516–2521.

    Article  CAS  Google Scholar 

  82. Luehrsen, K. R., Marr, L. L., van der Knaap, E., and Cumberledge, S., 1997, Analysis of differential display RT-PCR products using fluorescent primers and GENESCANTM software, BioTechniques 22: 168–174.

    CAS  Google Scholar 

  83. Alexandre, I., Zammatteo, N., Moris, P., Brancart, F., and Remacle, J., 1997, Comparison of three luminescent assays combined with a sandwich hybridization for the measurement of PCR-amplified human cytomegalovirus DNA, J. Virol. Methods 66: 113–122.

    Article  CAS  Google Scholar 

  84. Kostrikis, L. G., tyagi, S., Mhlanga, M. M., Ho, D. D., and Kramer, F. R., 1998, Spectral genotyping of human alleles, Science 279: 1228–1229.

    Article  CAS  Google Scholar 

  85. Tyagi,S.,Bratu,D. P., and Kramer, F.R., 1998, Multicolor molecular beacons for allele discrimination, Nat. Biotechnol. 16: 49–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). DNA Technology. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics