Excited-State Reactions

  • Joseph R. Lakowicz

Abstract

In the preceding chapters we saw many examples of excited-state reactions. By an excited-state reaction we mean a molecular process which changes the structure of the excited-state fluorophore, and which occurs subsequent to excitation. Such reactions occur because light absorption frequently changes the electron distribution within a fluorophore, which in turn changes its chemical or physical properties. The best-known example of an excited-state reaction is that of phenol, which in neutral solution can lose the phenolic proton in the excited state. Deprotonation occurs more readily in the excited state because the electrons on the phenolic hydroxyl groups are shifted into the phenol ring, making this hydroxyl group more acidic.

Keywords

Excited State Decay Time Phase Angle Proton Transfer Excited State Intramolecular Proton Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ireland, J. F., and Wyatt, P. A. H., 1976, Acid-base properties of electronically excited states of organic molecules, in Advances in Physical Organic Chemistry, V. Gold and D. Bethell (eds.), Academic Press, New York, pp. 132–215.Google Scholar
  2. 2.
    Wan, P., and Shukla, D., 1993, Utility of acid-base behavior of excited states of organic molecules, Chenu Rev. 93: 571–584.CrossRefGoogle Scholar
  3. 3.
    Martynov, I. Y., Demyashkevich, A. B., Uzhinov, B. M., and Kuz’min, M. G., 1977, Proton transfer reactions in the excited electronic states of aromatic molecules, Usp. Khim. (Russian Chemical Physics) 46: 3–31.Google Scholar
  4. 4.
    Shizuka, H., 1985, Excited state proton-transfer reactions and proton-induced quenching of aromatic compounds, Acc. Chem. Res. 18: 141–147.CrossRefGoogle Scholar
  5. 5.
    Schulman, S. G., 1976, Acid-base chemistry of excited singlet states, in Modern Fluorescence Spectroscopy, E. L. Wehry (ed.), Plenum Press, New York, pp. 239–275.CrossRefGoogle Scholar
  6. 6.
    Gafni, A., and Brand, L., 1978, Excited state proton transfer reactions of acridine studied by nanosecond fluorometry, Chem Phys. Lett. 58: 346–350.CrossRefGoogle Scholar
  7. 7.
    Ofran, M., and Feitelson, J., 1978, Time dependence of dissociation in the excited state of ß-naphthol, Chem. Phys. Lett. 19:427–431.Google Scholar
  8. 8.
    Tsutsumi, K., and Shizuka, H., 1980, Proton transfer and acidity constant in the excited state of naphthols by dynamic analyses, Z Phys. Chem. N. F. 122: 129–142.CrossRefGoogle Scholar
  9. 9.
    Harris, C. M., and Seiinger, B. K., 1980, Proton-induced fluorescence quenching of 2-naphthol, J. Phys. Chem. 84: 891–898.CrossRefGoogle Scholar
  10. 10.
    Harris, C. M., and Sellinger, B. K., 1980, Acid-base properties of 1-naphthol. Proton-induced fluorescence quenching, J. Phys. Chem. 84: 1366–1371.CrossRefGoogle Scholar
  11. 11.
    Webb, S. P., Yeh, S.W., Philips, L. A., Tolbert, M. A., and Clark, J. H., 1984, Ultrafast excited-state proton transfer in 1-naphthol, J. Am. Chem Soc. 106: 7286–7288.CrossRefGoogle Scholar
  12. 12.
    Boyer, R., Deckey, G., Marzzacco, C., Mulvaney, M., Schwab, C., and Halpern, A. M., 1985, The photophysical properties of 2- naphthol, J. Chem. Educ. 62: 630–632.CrossRefGoogle Scholar
  13. 13.
    Bardez, E., Monnier, E., and Valeur, B., 1985, Dynamics of excited-state reactions in reversed micelles. 2. Proton transfer involving various fluorescent probes according to their sites of solubilization, J. Phys. Chem. 89: 5031–5036.CrossRefGoogle Scholar
  14. 14.
    Loken, M. R., Hayes, J. W., Gohlke, J. R., and Brand, L., 1972, Excited-state proton transfer as a biological probe. Determination of rate constants by means of nanosecond fluorometry, Biochemistry 11: 4779–4786.CrossRefGoogle Scholar
  15. 15.
    Laws, W. R., and Brand, L., 1979, Analysis of two-state excited-state reactions. The fluorescence decay of 2-naphthol, J. Phys. Chem. 83: 795–802.CrossRefGoogle Scholar
  16. 16.
    Htun, M. T., Suwaiyan, A., and Klein, U. K. A., 1995, Time-resolved spectroscopy of 4-hydroxy-l-naphthalenesulphonate in alcohol-water mixtures, Chem. Phys. Lett. 243: 506–511.CrossRefGoogle Scholar
  17. 17.
    Laws, W. R., Posner, G. H., and Brand, L., 1979, A covalent fluorescence probe based on excited state proton transfer, Arch. Biochem. Biophys. 193: 88–100.CrossRefGoogle Scholar
  18. 18.
    Marciniak, B., Kozubek, H., and Paszyc, S., 1992, Estimation of pKa in the first excited single state, J. Chem. Educ. 69: 247–249.CrossRefGoogle Scholar
  19. 19.
    Davenport, L., Knutson, J. R., and Brand, L., 1986, Excited-state proton transfer of equilenin and dihydroequilenin: Interaction with bilayer vesicles, Biochemistry 25: 1186–1195.CrossRefGoogle Scholar
  20. 20.
    Lin, H., and Gryczynski, I., unpublished observations.Google Scholar
  21. 21.
    Förster, Th., 1950, Die pH-abhangigkeit der fluoreszenz von naphthalinderivaten, Z Electrocherru 54: 531–553.Google Scholar
  22. 22.
    Grabowski, Z. R., and Grabowska, A., 1976, The Förster cycle reconsidered, Z Phys. Chem. N. F. 104: 197–208.CrossRefGoogle Scholar
  23. 23.
    Grabowski, Z. R., 1981, Generalized Förster cycle applied to coordination compounds, J. Lumin. 24/25: 559–562.Google Scholar
  24. Grabowski, Z. R., and Rubaszewska, W., 1977, Generalised Förster cycle, J. Chem. Soc., Faraday Trans. 173:11–28.Google Scholar
  25. 25.
    Birks, J. B., 1970, Photophysics of Aromatic Molecules, Wiley- Interscience, New York.Google Scholar
  26. 26.
    Brand, L., and Laws, W. R., 1983, Excited-state proton transfer, in Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, R. D. Cundall and F. E. Dale (eds.), Plenum Press, New York, pp. 319–340.Google Scholar
  27. 27.
    Lakowicz, J. R., and Baiter, A., 1982, Differential wavelength de-convolution of time-resolved fluorescence intensities: A new method for the analysis of excited state processes, Biophys. Chem. 16: 223–240.CrossRefGoogle Scholar
  28. 28.
    Rumbles, G., Smith, T. A., Brown, A. J., Carey, M., and Soutar, I., 1997, Autoreconvolution—an extension to the “reference convolution” procedure for the simultaneous analysis of two fluorescence decays from one sample, J. Fluoresc. 7 (3): 217–229.CrossRefGoogle Scholar
  29. 29.
    Lakowicz, J. R., and Baiter, A., 1982, Theory of phase-modulation fluorescence spectroscopy for excited state processes, Biophys. Chem. 16: 99–115.CrossRefGoogle Scholar
  30. 30.
    Lakowicz, J. R., and Baiter, A., 1982, Analysis of excited state processes by phase-modulation fluorescence spectroscopy, Biophys. Chem. 16: 117–132.CrossRefGoogle Scholar
  31. 31.
    Lakowicz, J. R., and Baiter, A., 1982, Detection of the reversibility of an excited state reaction by phase modulation fluorometry, Chem. Phys. Lett. 92: 117–121.CrossRefGoogle Scholar
  32. 32.
    Spencer, R. D., and Weber, G., 1969, Measurement of subnanosec-ond fluorescence lifetimes with a cross-correlation phase fluorome-ter, Ann. N.Y. Acad. Sci. 158: 361–376.CrossRefGoogle Scholar
  33. 33.
    Veselova, T. V., Limareva, L. A., Cherkasov, A. S., and Shirokov, V. I., 1965, Fluorometric study of the effect of solvent on the fluorescence spectrum of 3-amino-N-methylphthalimide, Opt. Spectwsc. 19: 39–43.Google Scholar
  34. 34.
    Bakhshiev, N. G., Mazurenko, Yu. T., and Piterskaya, I. V., 1966, Luminescence decay in different portions of the luminescence spectrum of molecules in viscous solutions, Opt. Spectrosc. 21: 307–309.Google Scholar
  35. 35.
    Gryczynski, I., unpublished observations.Google Scholar
  36. 36.
    Lofroth, J-E., 1985, Recent developments in the analysis of fluorescence intensity and anisotropy data, in Analytical Instrumentation, A. J. W. G. Visser (ed.), Marcel Dekker, New York, pp. 403–431.Google Scholar
  37. 37.
    Itoh, M., Tokumura, K., Tanimoto, Y., Okada, Y., Takeuchi, H., Obi, K., and Tanaka, I., 1982, Time-resolved and steady-state fluorescence studies of the excited state proton transfer in 3-hydroxyflavone and 3-hydroxychromone, J. Am. Chem. Soc. 104: 4146–4150.CrossRefGoogle Scholar
  38. 38.
    McMorrow, D., and Kasha, M., 1984, Intramolecular excited-state proton transfer in 3-hydroxyflavone. Hydrogen-bonding solvent perturbations, J. Phys. Chem. 88: 2235–2243.CrossRefGoogle Scholar
  39. 39.
    Bulska, H., 1983, Intramolecular cooperative double proton transfer in [2,2/bipyridyl]-3,3-diol, Chem. Phys. Lett. 98: 398–402.CrossRefGoogle Scholar
  40. 40.
    Borowicz, P., Grabowska, A., Wortmann, R., and Liptay, W., 1992, Tautomerization in fluorescent states of bipyridyl-diols: A direct confirmation of the intramolecular double proton transfer by electro-optical emission measurements, J. Lumin. 52: 265–273.CrossRefGoogle Scholar
  41. 41.
    Klopffer, W., 1977, Intramolecular proton transfer in electronically excited molecules, in Advances in Photochemistry, J. N. Pitts, G. S. Hammond, and K. Gollnick (eds.), John Wiley and Sons, New York, pp. 311–358.CrossRefGoogle Scholar
  42. 42.
    Waluk, J., Bulska, H., Pakula, B., and Sepiol, J., 1981, Red edge excitation study of cooperative double proton transfer in 7-azain-dole, J; Lumin. 24/25:519–522.Google Scholar
  43. 43.
    Kim, Y. T., Yardley, J. T., and Hochstrasser, R. M., 1989, Solvent effects on intramolecular proton transfer, Chem. Phys. 136: 311–319.CrossRefGoogle Scholar
  44. 44.
    Sytnik, A., Gormin, D., and Kasha, M., 1994, Interplay between excited state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding site fluorescence probes, Proc. Natl. Acad. Sci. U.S.A. 91: 11968–11972.CrossRefGoogle Scholar
  45. 45.
    Sekikawa, T., Kobayashi, T., and Inabe, T., 1997, Femtosecond fluorescence study of proton-transfer process in thermochromic crystalline salicylideneanilines, J. Phys. Chem. B 101: 10645–10652.CrossRefGoogle Scholar
  46. 46.
    Chapman, C. F., and Maroncelli, M., 1992, Excited state tautomerization of 7-azaindole in water, J. Phys. Chem. 96: 8430–8441.CrossRefGoogle Scholar
  47. 47.
    Szabo, A. G., Krajcarski, D. T., Cavatorta, P., Masotti, L., and Barcellona, M. L., 1986, Excited state pKa behaviour of DAPI. A rationalization of the fluorescence enhancement of DAPI in DAPI- nucleic acid complexes, Photochem. Photobiol. 44: 143–150.CrossRefGoogle Scholar
  48. 48.
    Gutman, M., Huppert, D., and Nachliel, E., 1982, Kinetic studies of proton transfer in the microenvironment of a binding site, Eur. J. Biochem. 121: 637–642.CrossRefGoogle Scholar
  49. 49.
    Gutman, M., Nachliel, E., and Huppert, D., 1982, Direct measurement of proton transfer as a probing reaction for the microenvironment of the apomyoglobin heme-binding site, Eur. J. Biochem. 125: 175–181.CrossRefGoogle Scholar
  50. 50.
    Hresko, R. C., Sugar, I. P., Barenholz, Y., and Thompson, T. E., 1986, Lateral distribution of a pyrene-labeled phosphatidylcholine in phosphatidylcholine bilayers: Fluorescence phase and modulation study, Biochemistry 25: 3813–3823.CrossRefGoogle Scholar
  51. 51.
    Bauer, R. K., Kowalczyk, A., and Baiter, A., 1977, Phase fluorometer study of the excited state reactions of 4-methylumbelliferone, Z Naturforsch. A 32: 560–564.Google Scholar
  52. 52.
    Nemkovich, N. A., Matseiko, V. I., Rubinov, A. N., and Tomin, V. I., 1979, Kinetics of the spontaneous luminescence of p-methylumbel-liferone solutions in the nanosecond region, Opt. Spectrosc. 47: 490–493.Google Scholar
  53. 53.
    Baiter, A., and Rolinski, O., 1984, Excited state reactions of 4- methylumbelliferone studied by nanosecond fluorometry, Z Naturforsch. A 39:1035–1040.Google Scholar
  54. 54.
    de Melo, J. S., and Macanita, A. L., 1993, Three interconverting excited species: Experimental study and solution of the general photokinetic triangle by time-resolved fluorescence, Chem Phys. Lett. 204: 556–562.CrossRefGoogle Scholar
  55. 55.
    Beechem, J. M., Ameloot, M., and Brand, L., 1985, Global analysis of fluorescence decay surfaces: Excited-state reactions, Chem Phys. Lett. 120: 466–472.CrossRefGoogle Scholar
  56. 56.
    Ameloot, M., Boens, N., Andriessen, R., Van den Bergh, V., and De Schryver, F. C., 1991, Non a priori analysis of fluorescence decay surfaces of excited state processes. 1. Theory, J. Phys. Chem 95: 2041–2047.CrossRefGoogle Scholar
  57. 57.
    Andriessen, R., Boens, N., Ameloot, M., and De Schryver, F. C., 1991, Non a priori analysis of fluorescence decay surfaces of ex-cited-state processes. 2. Intermolecular excimer formation of py-rene, J. Phys. Chem. 95: 2047–2058.CrossRefGoogle Scholar
  58. 58.
    Boens, N., Andriessen, R., Ameloot, M., Van Dommelen, L., and De Schryver, F. C., 1992, Kinetics and identifiability of intramolecular two-state excited state processes. Global compartmental analysis of the fluorescence decay surface, J. Phys. Chem. 96: 6331–6342.CrossRefGoogle Scholar
  59. 59.
    Van Dommelen, L., Boens, N., Ameloot, M., De Schryver, F. C., and Kowalczyk, A., 1993, Species-associated spectra and upper and lower bounds on the rate constants of reversible intramolecular two-state excited state processes with added quencher. Global compartmental analysis of the fluorescence decay surface, J. Phys. Chem 97: 11738–11753.CrossRefGoogle Scholar
  60. 60.
    Van Dommelen, L., Boens, N., De Schryver, F. C., and Ameloot, M., 1995, Distinction between different competing kinetic models of irreversible intramolecular two-state excited-state processes with added quencher. Global compartmental analysis of the fluorescence decay surface, J. Phys. Chem. 99: 8959–8971.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations