Protein Fluorescence

  • Joseph R. Lakowicz


Discussions of biochemical fluorescence frequently start with the subject of protein fluorescence. This is because, among biopolymers, proteins are unique in displaying useful intrinsic fluorescence. Lipids, membranes, and saccharides are essentially nonfluorescent, and the intrinsic fluorescence of DNA is too weak to be useful. In proteins, the three aromatic amino acids—phenylalanine, tyrosine, and tryptophan—are all fluorescent. A favorable feature of protein structure is that these three amino acids are relatively rare in proteins. Tryptophan, which is the dominant intrinsic fluorophore, is generally present at about 1 mol % in proteins. A protein may possess just one or a few tryptophan residues, which facilitates interpretation of the spectral data. If all 20 amino acids were fluorescent, it is probable that protein emission would be too complex to interpret.


Emission Spectrum Tryptophan Residue Tryptophan Fluorescence Relative Quantum Yield Staphylococcal Nuclease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Permyakov, E. A., 1993, Luminescent Spectroscopy of Proteins, CRC Press, Boca Raton, Florida.Google Scholar
  2. 2.
    Demchenko, A. P., 1981, Ultraviolet Spectroscopy of Proteins, Springer-Verlag, New York.Google Scholar
  3. 3.
    Konev, S. V., 1967, Fluorescence and Phosphorescence of Proteins and Nucleic Acids, Plenum Press, New York.Google Scholar
  4. 4.
    Weinryb, I., and Steiner, R. F., 1971, The luminescence of the aromatic amino acids, in Excited States of Proteins and Nucleic Acids, R. F. Steiner and I. Weinryb (eds.), Plenum Press, New York, pp. 277–318.Google Scholar
  5. Chen, R. F., 1967, Fluorescence quantum yields of tryptophan and tyrosine, Anal Lett. l(l):35–42.Google Scholar
  6. 6.
    Longworth, J. W., 1983, Intrinsic fluorescence of proteins, in Time- Resolved Fluorescence Spectroscopy in Biochemistry and Biology, R. B. Cundall and R. E. Dale (eds.), Plenum Press, New York, pp. 651–778.Google Scholar
  7. 7.
    Lakowicz, J. R., and Maliwal, B. P., 1983, Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins, J. Biol Chem. 258: 4794 - 4801.Google Scholar
  8. 8.
    Weber, G., 1960, Fluorescence polarization spectrum and electronic-energy transfer in tyrosine, tryptophan, and related compounds, Biochem. J. 75: 335 - 345.Google Scholar
  9. 9.
    Weber, G., 1966, Polarization of the fluorescence of solutions, in Fluorescence and Phosphorescence Analysis, D. M. Hercules (ed.), Interscience Publishers, New York, pp. 217–240.Google Scholar
  10. 10.
    Ross, J. B. A, Laws, W. R., Rousslang, K. W., and Wyssbrod, H. R., 1992, Tyrosine fluorescence and phosphorescence from proteins and polypeptides, in Topics in Fluorescence Spectroscopy, Volume 3, Biochemical Applications, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1 - 63.Google Scholar
  11. 11.
    Lakowicz, J. R., Maliwal, B. P., Cherek, H., and Baiter, A., 1983, Rotational freedom of tryptophan residues in proteins and peptides, Biochemistry22: 1741–1752.CrossRefGoogle Scholar
  12. 12.
    Eftink, M. R., Selvidge, L. A., Callis, P. R., and Rehms, A. A., 1990, Photophysics of indole derivatives: Experimental resolution of *La and transitions and comparison with theory, J. Phys. Chem.94: 3469–3479.CrossRefGoogle Scholar
  13. 13.
    Yamamoto, Y., and Tanaka, J., 1972, Polarized absorption spectra of crystals of indole and its related compounds, Bull Chem. Soc. Jpn.45: 1362–1366.CrossRefGoogle Scholar
  14. 14.
    Song, P.-S., and Kurtin, W. E., 1969, A spectroscopic study of the polarized luminescence of indole, J. Am. Chem. Soc.91: 4892–4906.CrossRefGoogle Scholar
  15. 15.
    Albinsson, B., Kubista, M., Norden, B., and Thulstrup, E. W., 1989, Near-ultraviolet electronic transitions of the tryptophan chromo-phore: Linear dichroism, fluorescence anisotropy, and magnetic circular dichroism spectra of some indole derivatives, J. Phys. Chem.93: 6646–6655.CrossRefGoogle Scholar
  16. 16.
    Albinsson, B., and Norden, B., 1992, Excited-state properties of the indole chromophore. Electronic transition moment directions from linear dichroism measurements: Effect of methyl and methoxy sub-stituents, J. Phys. Chem. 96: 6204 - 6212.CrossRefGoogle Scholar
  17. Callis, P. R., 1997, and transitions of tryptophan: Applications of theory and experimental observations to fluorescence of proteins, Methods Enzymol. 278:113–150.Google Scholar
  18. 18.
    Valeur, B., and Weber, G., 1977, Resolution of the fluorescence excitation spectrum of indole into the 1La and *Lb excitation bands, Photochem. Photobiol.25: 441–444.CrossRefGoogle Scholar
  19. 19.
    Rayner, D. M., and Szabo, A. G., 1977, Time resolved fluorescence of aqueous tryptophan, Can. J. Chem.56: 743–745.CrossRefGoogle Scholar
  20. 20.
    Petrich, J. W., Chang, M. C., McDonald, D. B., and Fleming, G. R., 1983, On the origin of nonexponential fluorescence decay in tryptophan and its derivatives, J. Am. Chem. Soc. 105: 3824 - 3832.CrossRefGoogle Scholar
  21. 21.
    Creed, D., 1984, The photophysics and photochemistry of the near- UV absorbing amino acids—I. Tryptophan and its simple derivatives, Photochem. Photobiol. 39: 537 - 562.CrossRefGoogle Scholar
  22. 22.
    Fleming, G. R., Morris, J. M., Robbins, R. J., Woolfe, G. J., Thistle-waite, P. J., and Robinson, G. W., 1978, Nonexponential fluorescence decay of aqueous tryptophan and two related peptides by picosecond spectroscopy, Proc. Natl Acad. Sci. US.A. 75: 4652 - 4656.CrossRefGoogle Scholar
  23. Gryczynski, I., Wiczk, W., Johnson, M. L., and Lakowicz, J. R., 1988, Lifetime distributions and anisotropy decays of indole fluorescence in cyclohexane/ethanol mixtures by frequency-domain fluorometry, Biophys. Chem. 32:173–185.Google Scholar
  24. 24.
    Walker, M. S., Bednar, T. W., and Lumry, R., 1966, Exciplex formation in the excited state, J. Chem. Phys.45: 3455–3456.CrossRefGoogle Scholar
  25. 25.
    Hershberger, M. V., Lumry, R., and Verral, R., 1981, The 3-methylin-dole/n-butanol exciplex: Evidence for two exciplex sites in indole compounds, Photochem. Photobiol.33: 609–617.CrossRefGoogle Scholar
  26. 26.
    Strickland, E. H., Horwitz, J., and Billups, C., 1970, Near-ultraviolet absorption bands of tryptophan. Studies using indole and 3- methylindole as models, Biochemistry 9: 4914 - 4920.CrossRefGoogle Scholar
  27. 27.
    Lasser, N., Feitelson, J., and Lumiy, R., 1977, Exciplex formation between indole derivatives and polar solutes, Isr. J. Chem.16: 330–334.Google Scholar
  28. 28.
    Sun, M., and Song, P.-S., 1977, Solvent effects on the fluorescent states of indole derivatives—dipole moments, Photochem. Photo-bioi25: 3–9.CrossRefGoogle Scholar
  29. 29.
    Lami, H., and Glasser, N., 1986, Indole’s solvatochromism revisited, J. Chem. Phys. 84: 597 - 604.CrossRefGoogle Scholar
  30. 30.
    Pierce, D. W., and Boxer, S. G., 1995, Stark effect spectroscopy of tryptophan, Biophys. J. 68: 1583 - 1591.CrossRefGoogle Scholar
  31. 31.
    Callis, P. R., and Burgess, B. K., 1997, Tryptophan fluorescence shifts in proteins from hybrid simulations: An electrostatic approach, J. Phys. Chem. B. 101: 9429 - 9432.CrossRefGoogle Scholar
  32. 32.
    Strickland, E. H., Billups, C., and Kay, E., 1972, Effects of hydrogen bonding and solvents upon the tryptophanyl *La absorption band. Studies using 2,3-dimethylindole, Biochemistry 11: 3657 - 3662.CrossRefGoogle Scholar
  33. 33.
    Van Duuren, B. L., 1961, Solvent effects in the fluorescence of indole and substituted indoles, J. Org. Chem. 26: 2954 - 2960.CrossRefGoogle Scholar
  34. 34.
    Willis, K. J., and Szabo, A. G., 1991, Fluorescence decay kinetics of tyrosinate and tyrosine hydrogen-bonded complexes, J. Phys. Chem. 95: 1585 - 1589.CrossRefGoogle Scholar
  35. 35.
    Willis, K. J., Szabo, A. G., and Krajcarski, D. T., 1990, The use of Stokes Raman scattering in time correlated single photon counting: Application to the fluorescence lifetime of tyrosinate, Photochem. Photobiol.51: 375–377.CrossRefGoogle Scholar
  36. 36.
    Rayner, D. M., Krajcarski, D. T., and Szabo, A. G., 1978, Excited-state acid-base equilibrium of tyrosine, Can. J. Chem. 56: 1238 - 1245.CrossRefGoogle Scholar
  37. 37.
    Pal, H., Palit, D. K., Mukherjee, T., and Mittal, J. P., 1990, Some aspects of steady state and time-resolved fluorescence of tyrosine and related compounds, J. Photochem. Photobiol., A: Chem. 52: 391–409.Google Scholar
  38. 38.
    Shimizu, O., and Imakuvo, K., 1977, New emission band of tyrosine induced by interaction with phosphate ion, Photochem. Photobiol.26: 541–543.CrossRefGoogle Scholar
  39. 39.
    Dietze, E. C., Wang, R. W., Lu, A. Y. H., and Atkins, W. M., 1996, Ligand effects on the fluorescence properties of tyrosine-9 in alpha 1–1 glutathione S-transferase, Biochemistry35: 6745–6753.CrossRefGoogle Scholar
  40. 40.
    Behmaarai, T. A., Toulme, J. J., and Helene, C., 1979, Quenching of tyrosine fluorescence by phosphate ions. A model study for protein-nucleic acid complexes, Photochem. Photobiol. 30: 533 - 539.CrossRefGoogle Scholar
  41. 41.
    Schnarr, M., and Helene, C., 1982, Effects of excited-state proton transfer on the phosphorescence of tyrosine-phosphate complexes, Photochem. Photobiol.36: 91–93.CrossRefGoogle Scholar
  42. 42.
    Szabo, A., Lynn, K. R., Krajcarski, D. T., and Rayner, D. M., 1978, Tyrosinate fluorescence maxima at 345 nm in proteins lacking tryptophan at pH 7,FEBS Lett. 94: 249–252.Google Scholar
  43. 43.
    Libertini, L. J., and Small, E. W., 1985, The intrinsic tyrosine fluorescence of histone HI, Biophys. J. 47: 765 - 772.CrossRefGoogle Scholar
  44. 44.
    Jordano, J., Barbero, J. L., Montero, F., and Franco, L., 1983, Fluorescence of histones HI, J. Biol. Chem. 258: 315 - 320.Google Scholar
  45. 45.
    Prendergast, F. G., Hampton, P. D., and Jones, B., 1984, Characteristics of tyrosinate fluorescence emission in a- and p-purothion-ins, Biochemistry23: 6690–6697.CrossRefGoogle Scholar
  46. 46.
    Pundak, S., and Roche, R. S., 1984, Tyrosine and tyrosinate fluorescence of bovine testes calmodulin: Calcium and pH dependence, Biochemistry23: 1549–1555.CrossRefGoogle Scholar
  47. 47.
    Leroy, E., Lami, H., and Laustriat, G., 1971, Fluorescence lifetime and quantum yield of phenylalanine aqueous solutions. Temperature and concentration effects, Photochem. Photobiol. 13: 411 - 421.CrossRefGoogle Scholar
  48. 48.
    Longworth, J. W., 1971, Luminescence of polypeptides and proteins, in Excited States of Proteins and Nucleic Acids, R. F. Steiner and I. Weinryb (eds.), Plenum Press, New York, pp. 319–484.Google Scholar
  49. 49.
    Teale, F. W. J., 1960, The ultraviolet fluorescence of proteins in neutral solution, Biochem. J.76: 381–388.Google Scholar
  50. 50.
    Burstein, E. A., Vedenkina, N. S., and Ivkova, M. N., 1974, Fluorescence and the location of tryptophan residues in protein molecules, Photochem. Photobiol. 18: 263 - 279.CrossRefGoogle Scholar
  51. 51.
    Kronman, M. J., and Holmes, L. G., 1971, The fluorescence of native, denatured and reduced denatured proteins, Photochem. Photobiol. 14: 113 - 134.CrossRefGoogle Scholar
  52. 52.
    Eftink, M. R., 1990, Fluorescence techniques for studying protein structure, Methods Biochem. Anal.35: 117–129.Google Scholar
  53. 53.
    Burstein, E. A., 1976, Luminescence of protein chromophores, in Model Studies. Science and Technology Results, Volume 6, Biophysics, VINITI, Moscow.Google Scholar
  54. 54.
    Suwaiyan, A., and Klein, U. K. A., 1989, Picosecond study of solute-solvent interaction of the excited state of indole, Chem. Phys. Lett. 159: 244 - 250.CrossRefGoogle Scholar
  55. 55.
    Finazzi-Agro, A., Rotilio, G., Avigliano, L., Guerrieri, P., Boffi, V., and Mondovi, B., 1970, Environment of copper in Pseudomonas fluorescensazurin: Fluorometric approach, Biochemistry 9: 2009 - 2014.CrossRefGoogle Scholar
  56. 56.
    Burstein, E. A., Permyakov, E. A., Yashin, V. A., Burkhanov, S. A., and Agro, A. F., 1977, The fine structure of luminescence spectra of azurin, Biochim. Biophys. Acta 491: 155 - 159.CrossRefGoogle Scholar
  57. 57.
    Szabo, A. G., Stepanik, T. M., Wayner, D. ML, and Young, N. M., 1983, Conformational heterogeneity of the copper binding site in azurin, Biophys. J. 41: 233 - 244.CrossRefGoogle Scholar
  58. 58.
    Adman, E. T., Stenkamp, R. E., Sieker, L. C., and Jensen, L. H., 1978, A crystallographic model for azurin at 3 Aresolution, J. Mol. Biol. 123: 35 - 47.CrossRefGoogle Scholar
  59. 59.
    Adman, E. T., and Jensen, L. H., 1981, Structural features of azurin at 2.7 Aresolution, Isr. J. Chem.21: 8–12.Google Scholar
  60. 60.
    Aueuhel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (eds.), 1987, Current Protocols in Molecular Biology, John Wiley and Sons, New York, Chapter 8.Google Scholar
  61. 61.
    Sambrook, J., Fritsch, E. F., and Maniatis, T., 1989, Molecular Cloning, Cold Spring Harbor Laboratory Press, Plainview, New York, USA, Chapter 15.Google Scholar
  62. 62.
    Gilardi, G., Mei, G., Rosato, N., Canters, G. W., and Finazzi-Agro, A., 1994, Unique environment of Trp48 in Pseudomonas aeruginosaazurin as probed by site-directed mutagenesis and dynamic fluorescence anisotropy, Biochemistry33: 1425–1432.CrossRefGoogle Scholar
  63. 63.
    Petrich, J. W., Longworth, J. W., and Fleming, G. R., 1987, Internal motion and electron transfer in proteins: A picosecond fluorescence study of three homologous azurins, Biochemistry26: 2711–2722.CrossRefGoogle Scholar
  64. 64.
    Lakowicz, J. R., Cherek, H., Gryczynski, I., Joshi, N., and Johnson, M. L., 1987, Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples, Biophys. J. 51: 755 - 768.CrossRefGoogle Scholar
  65. 65.
    Georghiou, S., Thompson, M., and Mukhopadhyay, A. K., 1982, Melittin-phospholipid interaction studied by employing the single tryptophan residue as an intrinsic fluorescent probe, Biochim. Biophys. Acta 688: 441 - 452.CrossRefGoogle Scholar
  66. 66.
    Boteva, R., Zlateva, T., Dorovska-Taran, V., Visser, A. J. W. G., Tsanev, R., and Salvato, B., 1996, Dissociation equilibrium of human recombinant interferon y, Biochemistry 35: 14825 - 14830.CrossRefGoogle Scholar
  67. 67.
    Eisinger, J., 1969, Intramolecular energy transfer in adrenocortico-tropin, Biochemistry8: 3902–3908.CrossRefGoogle Scholar
  68. Gryczynski, I., unpublished observations.Google Scholar
  69. 69.
    Searcy, D. G., Montenay-Garestier, T., and Helene, C., 1989, Phenyl-alanine-to-tyrosine singlet energy transfer in the archaebacterial histone-like protein HTa, Biochemistry28: 9058–9065.CrossRefGoogle Scholar
  70. 70.
    Kupryszewska, M., Gryczynski, I., and Kawski, A., 1982, Intramolecular donor-acceptor separations in methionine- and leucine-enkephalin estimated by long-range radiationless transfer of singlet excitation energy, Photochem. Photobiol.36: 499–502.CrossRefGoogle Scholar
  71. 71.
    Gryczynski, I., Kawski, A., Darlak, K., and Grzonka, Z., 1985, Intramolecular electronic excitation energy transfer in dermorphine and its analogues, J. Photochem. 30: 371 - 377.CrossRefGoogle Scholar
  72. 72.
    Chiu, H. C., and Bersohn, R., 1977, Electronic energy transfer between tyrosine and tryptophan in the peptides Trp-(Pro)n-iyr, Biopolymers 16: 277 - 288.CrossRefGoogle Scholar
  73. 73.
    Moreno, M. J., and Prieto, M., 1993, Interaction of the peptide hormone adrenocorticotropin, ACTH(l-24), with a membrane model system: A fluorescence study, Photochem. Photobiol.57: 431–437.CrossRefGoogle Scholar
  74. 74.
    Pearce, S. E, and Hawrot, E., 1990, Intrinsic fluorescence of binding-site fragments of the nicotinic acetylcholine receptor: Perturbations produced upon binding a-bungarotoxin, Biochemistry29: 10649–10659.CrossRefGoogle Scholar
  75. 75.
    Schiller, P. W., 1983, Fluorescence study on the conformation of a cyclic enkephalin analog in aqueous solution, Biochem. Biophys. Res. Commun. 114: 268 - 274.CrossRefGoogle Scholar
  76. 76.
    Alfimova, E. Ya., and Likhtenstein, G. I., 1976, Fluorescence study of energy transfer as method of study of protein structure, Mol. Biol. (Moscow)8 (2): 127–179.Google Scholar
  77. 77.
    Eftink, M. R., and Ghiron, C. A., 1977, Exposure of tryptophanyl residues and protein dynamics, Biochemistry 16: 5546 - 5551.CrossRefGoogle Scholar
  78. 78.
    Eftink, M. R., and Ghiron, C. A., 1981, Fluorescence quenching studies with proteins, Anal. Biochem. 114: 199 - 227.CrossRefGoogle Scholar
  79. 79.
    Eftink, M. R., 1991, Fluorescence quenching: Theory and applications, in Topics in Fluorescence Spectroscopy, Volume 2, Principles, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 53 - 126.Google Scholar
  80. 80.
    Eftink, M. R., and Ghiron, C. A., 1976, Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies, Biochemistry 15: 672 - 680.CrossRefGoogle Scholar
  81. 81.
    Wu, C.-S. C., and Yang, J. T., 1980, Helical conformation of glucagon in surfactant solutions, Biochemistry19: 2117–2122.CrossRefGoogle Scholar
  82. Boesch, C., Bundi, A., Oppliger, M., and Wiithrich, K., 1978, *H nuclear-magnetic-resonance studies of the molecular conformation of monomelic glucagon in aqueous solution, Eur. J. Biochem. 91:209–214.Google Scholar
  83. 83.
    Edelhoch, H., and Lippoldt, R. E., 1969, Structural studies on polypeptide hormones, J. Biol. Chem.244: 3876–3883.Google Scholar
  84. 84.
    Terwilliger, T. C., and Eisenberg, D., 1982, The structure of melittin, J. Biol. Chem.257: 6016–6022.Google Scholar
  85. 85.
    Lakowicz, J. R., and Weber, G., 1973, Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond timescale, Biochemistry12: 4171–4179.CrossRefGoogle Scholar
  86. 86.
    Calhoun, D. B., Vanderkooi, J. M., and Englander, S. W., 1983, Penetration of small molecules into proteins studied by quenching of phosphorescence and fluorescence, Biochemistry22: 1533–1539.CrossRefGoogle Scholar
  87. 87.
    Calhoun, D. B., Englander, S. W., Wright, W. W., and Vanderkooi, J. M., 1988, Quenching of room temperature protein phosphorescence by added small molecules, Biochemistry27: 8466–8474.CrossRefGoogle Scholar
  88. 88.
    Kouyama, I., Kinosita, K., and Ikegami, A., 1989, Correlation between internal motion and emission kinetics of tryptophan residues in proteins, Eur. J. Biochem.182: 517–521.CrossRefGoogle Scholar
  89. 89.
    Lakowicz, J. R., Gryczynski, I., Cherek, I., Szmacinski, H., and Joshi, N., 1991, Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching, Eur. Biophys. J. 19: 125 - 140.CrossRefGoogle Scholar
  90. 90.
    Avigliano, L., Finazzi-Agro, A., and Mondovi, B., 1974, Perturbation studies on some blue proteins, FEBS Lett. 38: 205–208.CrossRefGoogle Scholar
  91. 91.
    Wasylewski, Z., Kaszycki, P., Guz, A., and Stryjewski, W., 1988, Fluorescence quenching resolved spectra of fluorophores in mixtures and micellar solutions, Eur. J. Biochem. 178: 471 - 476.CrossRefGoogle Scholar
  92. 92.
    Stryjewski, W., and Wasylewski, Z., 1986, The resolution of heterogeneous fluorescence of multitryptophan-containing proteins studied by a fluorescence-quenching method, Eur. J. Biochem. 158: 547 - 553.CrossRefGoogle Scholar
  93. 93.
    Wasylewski, Z., Kaszycki, P., and Drwiega, M., 1996, A fluorescence study of TnlO-encoded tet repressor, J. Protein Chem. 15: 45 - 52.CrossRefGoogle Scholar
  94. 94.
    Wasylewski, Z., Koloczek, H., and Wasniowska, A., 1988, Fluorescence quenching resolved spectroscopy of proteins, Eur. J. Biochem. 172: 719 - 724.CrossRefGoogle Scholar
  95. 95.
    Blicharska, Z., and Wasylewski, Z., 1995, Fluorescence quenching studies of Trp repressor using single-tryptophan mutants, /. Protein Chem. 14: 739–746.CrossRefGoogle Scholar
  96. Gryczynski, I., and Lakowicz, J. R., unpublished observations.Google Scholar
  97. 97.
    Talbot, J. C., Dufourcq, J., de Bony, J., Faucon, J. F., and Lussan, C., 1979, Conformational change and self association of monomeric melittin, FEBS Lett. 102: 191–193.CrossRefGoogle Scholar
  98. 98.
    Georghiou, S., Thompson, M., and Mukhopandhyay, A. K., 1981, Melittin-phospholipid interaction. Evidence for melittin aggregation, Biochim. Biophys. Acta 642: 429 - 432.CrossRefGoogle Scholar
  99. 99.
    Steiner, R. F., Marshall, L., and Needleman, D., 1986, The interaction of melittin with calmodulin and its tryptic fragments, Arch. Biochem. Biophys. 246: 286 - 300.CrossRefGoogle Scholar
  100. 100.
    Lakowicz, J. R., Gryczynski, I., Laczko, G., Wiczk, W., and Johnson, M. L., 1994, Distribution of distances between the tryptophan and the N-terminal residue of melittin in its complex with calmodulin, troponin C, and phospholipids, Protein Sci. 3: 628–637.CrossRefGoogle Scholar
  101. 101.
    Daniel, E., and Weber, G., 1966, Cooperative effects in binding by bovine serum albumin, I. The binding of l-anilino-8-naphthalene-sulfonate. Biochemistry5: 1893–1900.CrossRefGoogle Scholar
  102. Anderson, D. R., and Weber, G., 1969, Fluorescence polarization of the complexes of l-anilino-8-naphthalenesulfonate with bovine serum albumin. Evidence for preferential orientation of the ligand, Biochemistry 8:371–377. Google Scholar
  103. 103.
    Condie, C. C., and Quay, S. C., 1983, Conformational studies of aqueous melittin, J. Biol. Chem. 258: 8231 - 8234.Google Scholar
  104. 104.
    Ross, J. B. A., Subramanian, S., and Brand, L., 1982, Spectroscopic studies of the pyridine nucleotide coenzymes and their complexes with dehydrogenases, in The Pyridine Nucleotide Coenzymes, Academic Press, New York, pp. 19–49.Google Scholar
  105. 105.
    Anderson, S. R., and Weber, G., 1965, Multiplicity of binding by lactate dehydrogenase, Biochemistry4: 1948–1957.CrossRefGoogle Scholar
  106. 106.
    Velick, S. F., 1958, Fluorescence spectra and polarization of glycer-aldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes, J. Biol. Chem.233: 1455–1467.Google Scholar
  107. 107.
    Zukin, R. S., 1979, Evidence for a conformational change in the Escherichia colimaltose receptor by excited state fluorescence lifetime data, Biochemistry 18: 2139 - 2145.CrossRefGoogle Scholar
  108. 108.
    Malencik, D. A., and Anderson, S. R., 1984, Peptide binding by calmodulin and its proteolytic fragments and by troponin C, Biochemistry23: 2420–2428.CrossRefGoogle Scholar
  109. Cox, J. A., Comte, ML Fitton, J. R, and DeGrado, W. F., 1985, The interaction of calmodulin with amphiphilic peptides, J. Biol. Chem. 260:2527–2534.Google Scholar
  110. 110.
    O’Neil, K. T., Wolfe, H. R., Erickson-Viitanen, S., and DeGrado, W. F., 1987, Fluorescence properties of calmodulin-binding peptides reflect alpha-helical periodicity, Science236: 1454–1456.CrossRefGoogle Scholar
  111. 111.
    Kilhoffer, M.-C., Kubina, M., Travers, F., andHaiech, J., 1992, Use of engineered proteins with internal tryptophan reporter groups and perturbation techniques to probe the mechanism of ligand-protein interactions: Investigation of the mechanism of calcium binding to calmodulin, Biochemistry31: 8098–8106.CrossRefGoogle Scholar
  112. 112.
    Chabbert, M., Lukas, T. J., Watterson, D. M., Axelsen, P. H., and Prendergast, F. G., 1991, Fluorescence analysis of calmodulin mutants containing tryptophan: Conformational changes induced by calmodulin-binding peptides from myosin light chain kinase and protein kinase II, Biochemistry30: 7615–7630.CrossRefGoogle Scholar
  113. 113.
    Pokalsky, C., Wick, P., Harms, E., Lytle, F. E., and Van Etten, R. L., 1995, Fluorescence resolution of the intrinsic tryptophan residues of bovine protein tyrosyl phosphatase, J. Biol. Chem. 270: 3809 - 3815.CrossRefGoogle Scholar
  114. 114.
    Hasselbacher, C. A., Rusinova, E., Waxman, E., Rusinova, R., Kohanski, R. A., Lam, W., Guha, A., Du, J., Lin, T. C., Polikarpov, I., Boys, C. W. G., Nemerson, Y., Königsberg, W. H., and Ross, J. B. A., 1995, Environments of the four tryptophans in the extracellular domain of human tissue factor: Comparison of results from absorption and fluorescence difference spectra of tryptophan replacement mutants with the crystal structure of the wild-type protein, Biophys. J.69: 20–29.CrossRefGoogle Scholar
  115. 115.
    Sanyal, G., Kim, E., Thompson, F. M., and Brady, E. K., 1989, Static quenching of tryptophan fluorescence by oxidized dithiothreitol, Biochem. Biophys. Res. Commun. 165: 772 - 781.CrossRefGoogle Scholar
  116. Hennecke, J., Sillen, A., Huber-Wunderlich, M., Engelborghs, Y. and Glockshuber, R., 1997, Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from Escherichia coli, Biochemistry 36:6391–6400.Google Scholar
  117. 117.
    Clark, P. L., Liu, Z.-P., Zhang, J., and Gierasch, L. M., 1996, Intrinsic tryptophans of CRABPI as probes of structure and folding, Protein Sei. 5: 1108–1117.CrossRefGoogle Scholar
  118. 118.
    Loewenthal, R., Sancho, J., and Fersht, A. R., 1991, Fluorescence spectrum of barnase: Contributions of three tryptophan residues and a histidine-related pH dependence, Biochemistry30: 6775–6779.CrossRefGoogle Scholar
  119. 119.
    Shopova, M., and Genov, N., 1983, Protonated form of histidine 238 quenches the fluorescence of tryptophan 241 in subtilisin novo, Int. J. Peptide Res. 21: 475 - 478.CrossRefGoogle Scholar
  120. 120.
    Eftink, M. R., 1991, Fluorescence quenching reactions, in Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, T. Gregory Dewey (ed.), Plenum Press, New York, pp. 1–41.Google Scholar
  121. 121.
    Cheung, C.-W., and Mas, M. T., 1996, Substrate-induced conformational changes in yeast 3-phosphoglycerate kinase monitored by fluorescence of single tryptophan probes, Protein Sei. 5: 1144–1149.CrossRefGoogle Scholar
  122. 122.
    Wu, P., Li, Y.-K., Talalay, P., and Brand, L., 1994, Characterization of the three tyrosine residues of A5–3-ketosteroid isomerase by time-resolved fluorescence and circular dichroism, Biochemistry33: 7415–7422.CrossRefGoogle Scholar
  123. 123.
    Lux, B., Baudier, J., and Gerard, D., 1985, Tyrosyl fluorescence spectra of proteins lacking tryptophan: Effects of intramolecular interactions, Photochem. Photobiol. 42: 245 - 251.CrossRefGoogle Scholar
  124. 124.
    Jones, B. E., Beechem, J. M., and Matthews, C. R., 1995, Local and global dynamics during the folding of Escherichia colidihydrofo-late reductase by time-resolved fluorescence spectroscopy, Biochemistry34: 1867–1877.CrossRefGoogle Scholar
  125. 125.
    Smith, C. J., Clarke, A. R., Chia, W. N., Irons, L. I., Atkinson, T., and Holbrook, J. J., 1991, Detection and characterization of intermediates in the folding of large proteins by the use of genetically inserted tryptophan probes, Biochemistry30: 1028–1036.CrossRefGoogle Scholar
  126. 126.
    Otto, M. R., Lillo, M. P., and Beechem, J. M., 1994, Resolution of multiphasic reactions by the combination of fluorescence total-intensity and anisotropy stopped-flow kinetic experiments, Biophys. J.67: 2511–2521.CrossRefGoogle Scholar
  127. 127.
    Ballew, R. M., Sabelko, J., and Gruebele, M., 1996, Direct observation of fast protein folding: The initial collapse of apomyoglobin, Proc. Natl. Acad. Sci. U.S.A.93: 5759–5764.CrossRefGoogle Scholar
  128. 128.
    Service, R. F., 1996, Folding proteins caught in the act, Science 273: 29 - 30.CrossRefGoogle Scholar
  129. 129.
    Eftink, M. R., 1994, The use of fluorescence methods to monitor unfolding transitions in proteins, Biophys. J.66: 482–501.CrossRefGoogle Scholar
  130. 130.
    Eftink, M. R., Ionescu, R., Ramsay, G. D., Wong, C.-Y., Wu, J. Q., and Maki, A. H., 1996, Thermodynamics of the unfolding and spectroscopic properties of the V66W mutant of Staphylococcalnuclease and its 1–136 fragment, Biochemistry35: 8084–8094.CrossRefGoogle Scholar
  131. 131.
    Ropson, I. J., and Dalessio, P. M., 1997, Fluorescence spectral changes during the folding of intestinal fatty acid binding protein, Biochemistry36: 8594–8601.CrossRefGoogle Scholar
  132. 132.
    Royer, C. A., Mann, C. J., and Matthews, C. R., 1993, Resolution of the fluorescence equilibrium unfolding profile of trpaporepres-sor using single tryptophan mutants, Protein Sci. 2: 1844–1852.CrossRefGoogle Scholar
  133. 133.
    Szpikowska, B. K., Beechem, J. M., Sherman, M. A., and Mas, M. T., 1994, Equilibrium unfolding of yeast phosphoglycerate kinase and its mutants lacking one or both native tryptophans: A circular dichroism and steady-state and time-resolved fluorescence study, Biochemistry33: 2217–2225.CrossRefGoogle Scholar
  134. 134.
    Sendak, R. A., Rothwarf, D. M., Wedemeyer, W. J., Houry, W. A., and Scheraga, H. A., 1996, Kinetic and thermodynamic studies of the folding/unfolding of a tryptophan-containing mutant of ribonu-clease A, Biochemistry 35: 12978 - 12992.CrossRefGoogle Scholar
  135. 135.
    Kim, J.-S., and Kim, H., 1996, Stability and folding of a mutant ribose-binding protein of Escherichia coli, J. Protein Chem.15: 731–736.CrossRefGoogle Scholar
  136. 136.
    Steer, B. A., and Merrill, A. R., 1995, Guanidine hydrochloride-in-duced denaturation of the colicin El channel peptide: Unfolding of local segments using genetically substituted tryptophan residues, Biochemistry34: 7225–7234.CrossRefGoogle Scholar
  137. 137.
    Hogue, C. W. V., Rasquinha, I., Szabo, A. G., and MacManus, J. P., 1992, A new intrinsic fluorescent probe for proteins, FEBS Lett. 310: 269–272.CrossRefGoogle Scholar
  138. 138.
    Ross, J. B. A., Senear, D. F., Waxman, E., Kombo, B. B., Rusinova, E., Huang, Y. T., Laws, W. R., and Hasselbacher, C. A., 1992, Spectral enhancement of proteins: Biological incorporation and fluorescence characterization of 5-hydroxytryptophan in bacteriophage XCI repressor, Proc. Natl. Acad. Sci. U.S.A.89: 12013–12027.CrossRefGoogle Scholar
  139. 139.
    Heyduk, E., and Heyduk, T., 1993, Physical studies on interaction of transcription activator and RNA-polymerase: Fluorescent derivatives of CRP and RNA polymerase, Cell. Mol. Biol. Res.39: 401–407.Google Scholar
  140. Laue, T. M., Senear, D. F., Eaton, S., and Ross, J. B. A., 1993, 5-Hydroxytryptophan as a new intrinsic probe for investigating protein-DNA interactions by analytical ultracentrifugation. Study of the effect of DNA on self-assembly of the bacteriophage X cl repressor, Biochemistry 32:2469–2472.Google Scholar
  141. 141.
    Soumillion, P., Jespers, L., Vervoort, J., and Fastrez, J., 1995, Biosynthetic incorporation of 7-azatryptophan into the phage lambda lysozyme: Estimation of tryptophan accessibility, effect on enzymatic activity and protein stability, Protein Eng. 8: 451–456.CrossRefGoogle Scholar
  142. 142.
    Wong, C.-Y., and Eftink, M. R., 1997, Biosynthetic incorporation of tryptophan analogues into staphylococcal nuclease: Effect of 5-hydroxytryptophan and 7-azatryptophan on structure and stability, Protein Sci. 6: 689–697.CrossRefGoogle Scholar
  143. Laws,W. R., Schwartz, G. P., Rusinova, E., Burke, G. T., Chu, Y.-C., Katsoyannis, P. G., and Ross, J. B. A., 1995,5-Hydroxytryptophan: An absorption and fluorescence probe which is a conservative replacement for [A 14 tyrosine] in insulin, J. Protein Chem. 14:225–232.Google Scholar
  144. 144.
    Hogue, C. W. V., and Szabo, A. G., 1993, Characterization of aminoacyl-adenylates in B. subtilistryptophanyl-tRNA synthetase, by the fluorescence of tryptophan analogs 5-hydroxytryptophan and 7-azatryptophan, Biophys. Chem.48: 159–169.CrossRefGoogle Scholar
  145. 145.
    Guharay, J., and Sengupta, P. K., 1996, Characterization of the fluorescence emission properties of 7-azatryptophan in reverse micellar environments, Biochem. Biophys. Res. Commun. 219: 388 - 392.CrossRefGoogle Scholar
  146. 146.
    Negrerie, M., Gai, F., Bellefeuille, S. M., and Petrich, J. W., 1991, Photophysics of a novel optical probe: 7-Azaindole, J. Phys. Chem.95: 8663–8670.CrossRefGoogle Scholar
  147. 147.
    Rich, R. L., Negrerie, M., Li, J., Elliott, S., Thornburg, R. W., and Petrich, J. W., 1993, The photophysical probe, 7-azatryptophan, in synthetic peptides, Photochem. Photobiol.58: 28–30.CrossRefGoogle Scholar
  148. 148.
    Chen, Y., Gai, F., and Petrich, J. W., 1994, Solvation and excited state proton transfer of 7-azaindole in alcohols, Chem. Phys. Lett.222: 329–334.CrossRefGoogle Scholar
  149. 149.
    Chen, Y., Gai, F., and Petrich, J. W., 1994, Single-exponential fluorescence decay of the nonnatural amino acid 7-azatryptophan and the nonexponential fluorescence decay of tryptophan in water, J. Phys. Chem.98: 2203–2209.CrossRefGoogle Scholar
  150. 150.
    Chen, Y., Rich, R. L., Gai, F., and Petrich, J. W., 1993, Fluorescent species of 7-azaindole and 7-azatryptophan in water, J. Phys. Chem.97: 1770–1780.CrossRefGoogle Scholar
  151. 151.
    English, D.S., Rich, R.L., and Petrich, J. W., 1998, Nonexponential fluorescence decay of 7-azatryptophan induced in a peptide environment, Photochem. Photobiol.67: 76–83.CrossRefGoogle Scholar
  152. 152.
    Hott, J. L., and Borkman, R. F., 1989, The non-fluorescence of 4-fluorotryptophan, Biochem. J.264: 297–299.Google Scholar
  153. 153.
    Bronskill, P. M., and Wong, J. T.-F., 1988, Suppression of fluorescence of tryptophan residues in proteins by replacement with 4-fluorotryptophan, Biochem. J.249: 305–308.Google Scholar
  154. 154.
    Willaert, K., Loewenthal, R., Sancho, J., Froeyen, M., Fersht, A., and Engelborghs, Y., 1992, Determination of the excited-state lifetimes of the tryptophan residues in barnase via multifrequency phase fluorometry of tryptophan mutants, Biochemistry 31: 711 - 716.CrossRefGoogle Scholar
  155. 155. Lakowicz, J. R. (ed.), 1997, Topics in Fluorescence Spectroscopy, Volume 5, Nonlinear and Two-Photon-Induced Fluorescence, Plenum Press, New York.Google Scholar
  156. 156.
    Kierdaszuk, B., Gryczynski, I., and Lakowicz, J. R., 1997, Two-photon induced fluorescence of proteins, in Topics in Fluorescence Spectroscopy, Volume 5, Nonlinear and Two-Photon-Induced Fluorescence, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 187–209.Google Scholar
  157. 157.
    Lakowicz, J. R., Gryczynski, I., Danielsen, E., and Frisoli, J. K., 1992, Anisotropy spectra of indole and N-acetyl-L-tryptopha-namide observed for two-photon excitation of fluorescence, Chem. Phys. Lett. 194: 282 - 287.CrossRefGoogle Scholar
  158. Lakowicz, J. R., and Gryczynski, I., 1993, Tryptophan fluorescence intensity and anisotropy decay of human serum albumin resulting from one-photon and two-photon excitation, Biophys. Chem. 45:1-6. Google Scholar
  159. 159.
    Lakowicz, J. R., Kierdaszuk, B., Gryczynski, I., and Malak, H., 1996, Fluorescence of horse liver alcohol dehydrogenase using one- and two-photon excitation, J. Fluoresc.6 (1): 51–59.CrossRefGoogle Scholar
  160. 160.
    Maiti, S., Sher, J. B., Williams, R. M., Zipfel, R. W., and Webb, W. W., 1997, Measuring serotonin distribution in live cells with three-photon excitation, Science275: 530–532.CrossRefGoogle Scholar
  161. 161.
    Gryczynski, I., Malak, H., and Lakowicz, J. R., 1996, Three-photon excitation of a tryptophan derivative using a fs-Ti: sapphire laser, Biospectwscopy2: 9–15.CrossRefGoogle Scholar
  162. 162.
    Gryczynski, I., Malak, H., Lakowicz, J. R., Cheung, H. C., Robinson, J., and Umeda, P. K., 1996, Fluorescence spectral properties of troponin C mutant F22W with one-, two-, and three-photon excitation, Biophys. J.71: 3448–3453.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations