Energy Transfer to Multiple Acceptors, in One, Two, or Three Dimensions

  • Joseph R. Lakowicz


In the previous two chapters on energy transfer, we considered primarily covalently linked donor—acceptor pairs, or situations in which there was a single acceptor near each donor. However, there are numerous situations in which there exist multiple acceptors, such as the obvious case of donors and acceptors dissolved in homogeneous solutions. More interesting examples of the multiple-acceptor case occur in membranes and nucleic acids. Suppose that one has a lipid bilayer which contains both donors and acceptors (Figure 15.1, middle). Each donor will be surrounded by acceptors in two dimensions. Since the acceptor distribution is random, each donor sees a different acceptor population. Hence, the intensity decay is an ensemble average and is typically nonexponential. A similar situation exists for donors and acceptors which are intercalated into double-helical DNA (Figure 15.1, right), except that in this case the acceptors are distributed in one dimension along the DNA helix.


Energy Transfer Propylene Glycol Transfer Efficiency Malachite Green Close Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Förster, V. T., 1949, Experimentelle und theoretische Untersuchung des zwischenmolekularen Ubergangs von Elektronenanregungsenergie, Z Naturforsch. A 4: 321–327.Google Scholar
  2. 2.
    Förster, Th., 1959, 10th Spiers Memorial Lecture, Transfer mechanisms of electronic excitation, Type=“Italic”>Disc. Faraday Soc. 27: 7–17.Google Scholar
  3. 3.
    Bojarski, C., and Sienicki, K., 1990, Energy transfer and migration in fluorescent solutions, in Photochemistry and Photophysics, Vol. I, J. F. Rabek (ed.), CRC Press, Boca Raton, Florida, pp. 1–57.Google Scholar
  4. 4.
    Galanin, M. D., 1955, The influence of concentration on luminescence in solutions, Soy. Phys. JETP 1: 317–325.Google Scholar
  5. 5.
    Maksimov, M. A., and Rozman, I. M., 1962, On the energy transfer in rigid solutions, Opt. Spectrosc. 12: 337–338.Google Scholar
  6. 6.
    Millar, D. P., Robbins, R. J., and Zewail, A. H., 1981, Picosecond dynamics of electronic energy transfer in condensed phases, J. Chem. Phys. 75: 3649–3659.Google Scholar
  7. 7.
    Lakowicz, J. R., Szmacinski, H., Gryczynski, I., Wiczk, W., and Johnson, M. L., 1990, Influence of diffusion on excitation energy transfer in solutions by gigahertz harmonic content frequency-domain fluorometry, J. Phys. Chem. 94: 8413–8416.CrossRefGoogle Scholar
  8. 8.
    Steinberg, I. Z., and Katchalski, E., 1968, Theoretical analysis of the role of diffusion in chemical reactions, fluorescence quenching, and nonradiative energy transfer, J. Chem. Phys. 48: 2404–2410.CrossRefGoogle Scholar
  9. 9.
    Elkana, Y., Feitelson, J., and Katchalski, E., 1968, Effect of diffusion on transfer of electronic excitation energy, J. Chem. Phys. 48: 2399–2404.CrossRefGoogle Scholar
  10. 10.
    Kutba, J., 1987, Long-range energy transfer in the case of material diffusion, J. Lumin. 37: 287–291.CrossRefGoogle Scholar
  11. 11.
    Yokota, M., and Tanimato, 0., 1967, Effects of diffusion on energy transfer by resonance, J. Phys. Soc. Jpn. 22: 779–784.CrossRefGoogle Scholar
  12. 12.
    Gösele, U., Hauser, M., Klein, U. K. A., and Frey, R., 1975, Diffusion and long-range energy transfer, Chem. Phys. Lett. 34: 519–522.CrossRefGoogle Scholar
  13. 13.
    Faulkner, L. R., 1976, Effects of diffusion on resonance energy transfer. Comparisons of theory and experiment, Chem. Phys. Lett. 43: 552–556.CrossRefGoogle Scholar
  14. 14.
    Birks, J. B., and Georghiou, S., 1968, Energy transfer in organic systems VII. Effect of diffusion on fluorescence decay, J. Phys. B 1: 958–965.CrossRefGoogle Scholar
  15. 15.
    Tweet, A. O., Bellamy, W. D., and Gains, G. L., 1964, Fluorescence quenching and energy transfer in monomolecular films containing chlorophyll. J. Chem. Phys. 41: 2068–2077.CrossRefGoogle Scholar
  16. 16.
    Koppel, D. E., Fleming, P. J., and Strittmatter, P., 1979, Intramembrane positions of membrane-bound chromophores determined by excitation energy transfer, Biochemistry 24: 5450–5457.CrossRefGoogle Scholar
  17. 17.
    Szmacinski, H., 1998, personal communication.Google Scholar
  18. 18.
    Maliwal, B. P., KuSba, J., and Lakowicz, J. R., 1994, Fluorescence energy transfer in one dimension: Frequency-domain fluorescence study of DNA—fluorophore complexes, Biopolymers 35: 245–255.CrossRefGoogle Scholar
  19. 19.
    Drake, J. M., Klafter, J., and Levitz, E,1991, Chemical and biological microstructures as probed by dynamic processes, Science 251: 1574–1579.Google Scholar
  20. 20.
    Dewey, T. G., 1991, Excitation energy transport in fractal aggregates, Chem. Phys. 150: 445–451.CrossRefGoogle Scholar
  21. 21.
    Lianos, P., and Duportail, G., 1993, Time-resolved fluorescence fractal analysis in lipid aggregates, Biophys. Chem. 48: 293–299.CrossRefGoogle Scholar
  22. 22.
    Loura, L. M. M., Fedorov, A., and Prieto, M., 1996, Resonance energy transfer in a model system of membranes: Applications to gel and liquid crystalline phases, Biophys. J. 71: 1823–1836.CrossRefGoogle Scholar
  23. 23.
    Tamai, N., Yamazaki, T., Yamazaki, I., Mizuma, A., and Mataga, N., 1987, Excitation energy transfer between dye molecules adsorbed on a vesicle surface, J. Phys. Chem. 91: 3503–3508.CrossRefGoogle Scholar
  24. 24.
    Levitz, P., Drake, J. M., and Klafter, J., 1988, Critical evaluation of the application of direct energy transfer in probing the morphology of porous solids, J. Chem. Phys. 89: 5224–5236.CrossRefGoogle Scholar
  25. 25.
    Drake, J. M., Levitz, P., Sinha, S. K., and Klafter, J., 1988, Relaxation of excitations in porous silica gels, Chem. Phys. 128: 199–207.CrossRefGoogle Scholar
  26. 26.
    Dewey, T. G., and Datta, M. M., 1989, Determination of the fractal dimension of membrane protein aggregates using fluorescence energy transfer, Biophys. J. 56: 415–420.CrossRefGoogle Scholar
  27. 27.
    Drake, J. M., and Kafter, J., 1990, Dynamics of confined molecular systems, Phys. Today 1990 (May) 46–55.CrossRefGoogle Scholar
  28. 28.
    Pines, D., and Huppert, D., 1987, Time-resolved fluorescence depolarization measurements in mesoporous silicas. The fractal approach, J. Phys. Chem. 91: 6569–6572.CrossRefGoogle Scholar
  29. 29.
    Pines, D., Huppert, D., and Avnir, D., 1988, The fractal nature of the surfaces of porous silicas as revealed in electronic energy transfer between adsorbates: Comparison of three donor/acceptor pairs, J. Chem. Phys. 89: 1177–1180.CrossRefGoogle Scholar
  30. 30.
    Nakashima, K., Duhamel, J., and Winnik, M. A.,1993, Photophysical processes on a latex surface: Electronic energy transfer from rhodamine dyes to malachite green, J. Phys. Chem. 97: 10702–10707.Google Scholar
  31. 31.
    Schurr, J. M., Fujimoto, B. S., Wu, P., and Song, L., 1992, Fluorescence studies of nucleic acids: Dynamics, rigidities and structures, in Topics in Fluorescence Spectroscopy, Type=“Italic”>Volume 3, Type=“Italic”>Biochemical Applications, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 137–229.Google Scholar
  32. 32.
    Mergny, J.-L., Slama-Schwok, A., Montenay-Garestier, T., Rougee, M., and Helene, C., 1991, Fluorescence energy transfer between dimethyldiazaperopyrenium dication and ethidium intercalated in poly d(A-T), Photochem. Photobiol. 53: 555–558.CrossRefGoogle Scholar
  33. 33.
    Wolber, P. K., and Hudson, B. S., 1979, An analytic solution to the problem of Förster energy transfer problem in two dimensions, Biophys. J. 28: 197–210.CrossRefGoogle Scholar
  34. 34.
    Dewey, T. G., and Hammes, G. G., 1980, Calculation of fluorescence resonance energy transfer on surfaces, Biophys. J. 32: 1023–1036.CrossRefGoogle Scholar
  35. 35.
    Hauser, M., Klein, U. K. A., and Gosele, U., 1976, Extension of Förster’s theory for long range energy transfer to donor—acceptor pairs in systems of molecular dimensions, Z Phys. Chem. 101:255–266.Google Scholar
  36. 36.
    Estep, T. N., and Thompson, T. E., 1979, Energy transfer in lipid bilayers, Biophys. J. 26: 195–208.CrossRefGoogle Scholar
  37. 37.
    Dobretsov, G. E., Kurek, N. K., Machov, V. N., Syrejshchikova, T. I., and Yakimenko, M. N., 1989, Determination of fluorescent probes localization in membranes by nonradiative energy transfer, J. Biochem. Biophys. Methods 19: 259–274.CrossRefGoogle Scholar
  38. 38.
    Blumen, A., Klafter, J., and Zumofen, G., 1986, Influence of restricted geometries on the direct energy transfer, J. Chem. Phys. 84: 1307–1401.CrossRefGoogle Scholar
  39. 39.
    Kellerer, H., and Blumen, A., 1984, Anisotropic excitation transfer to acceptors randomly distributed on surfaces, Biophys. J. 46: 1–8.CrossRefGoogle Scholar
  40. 40.
    Yguerabide, Y., 1994, Theory of establishing proximity relationships in biological membranes by excitation energy transfer measurements, Biophys. J. 66: 683–693.CrossRefGoogle Scholar
  41. 41.
    Bastiaens, P., de Beun, A., Lackea, M., Somerharja, P., Vauhkomer, M., and Eisinger, J., 1990, Resonance energy transfer from a cylindrical distribution of donors to a plane of acceptors; location of apo-B100 protein on the human low-density lipoprotein particle, Biophys. J. 58: 665–675.CrossRefGoogle Scholar
  42. 42.
    Baumann, J., and Fayer, M. D., 1986, Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: Effects of spatial geometry on time-resolved observables, J. Chem. Phys. 85: 4087–4107.CrossRefGoogle Scholar
  43. 43.
    Zimet, D. B., Thevenin, B. J.-M., Verkman, A. S., Shohet, S. B., and Abney, J. R., 1995, Calculation of resonance energy transfer in crowded biological membranes, Biophys. J. 68: 1592–1603.CrossRefGoogle Scholar
  44. 44.
    Snyder, B., and Frieri, E., 1982, Fluorescence energy transfer in two dimensions, Biophys. J. 40: 137–148.CrossRefGoogle Scholar
  45. 45.
    Fung, B., and Stryer, L., 1978, Surface density measurements in membranes by fluorescence resonance energy transfer, Biochemistry 17: 5241–5248.CrossRefGoogle Scholar
  46. 46.
    Pedersen, S., Jorgensen, K., Baekmark, T. R., and Mouritsen, O. G., 1996, Indirect evidence for lipid-domain formation in the transition region of phospholipid bilayers by two-probe fluorescence energy transfer, Biophys. J. 71: 554–560.CrossRefGoogle Scholar
  47. 47.
    Wolf, D. E., Winiski, A. P., Ting, A. E., Bocian, K. M., and Pagano, R. E., 1992, Determination of the transbilayer distribution of fluorescent lipid analogues by nonradiative fluorescence resonance energy transfer, Biochemistry 31: 2865–2873.CrossRefGoogle Scholar
  48. 48.
    Shaklai, N., Yguerabide, J., and Ranney, H. M., 1977, Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore, Biochemistry 16: 5585–5592.CrossRefGoogle Scholar
  49. 49.
    Thomas, D. D., Caslsen, W. F., and Stryer, L., 1978, Fluorescence energy transfer in the rapid diffusion limit, Proc. Natl. Acad Sci. U.S.A. 75: 5746–5750.CrossRefGoogle Scholar
  50. 50.
    Stryer, L., Thomas, D. D., and Meares, C. F., 1982, Diffusion-enhanced fluorescence energy transfer, Annu. Rev. Biophys. Bioeng. 11: 203–222.CrossRefGoogle Scholar
  51. 51.
    Thomas, D. D., and Stryer, L., 1982, Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes, J. Mol. Biol. 154: 145–157.CrossRefGoogle Scholar
  52. 52.
    Yeh, S. M., and Meares, C. F., 1980, Characterization of transferrin metal-binding sites by diffusion-enhanced energy transfer, Biochemistry 19: 5057–5062.CrossRefGoogle Scholar
  53. 53.
    Wensel, T. G., Chang, C.-H., and Meares, C. E, 1985, Diffusion-enhanced lanthanide energy-transfer study of DNA-bound cobalt(III) bleomycins: Comparisons of accessibility and electrostatic potential with DNA complexes of ethidium and acridine orange, Biochemistry 24: 3060–3069.CrossRefGoogle Scholar
  54. 54.
    Stryer, L., Thomas, D. D., and Carlsen, W. E., 1982, Fluorescence energy transfer measurements of distances in rhodopsin and the purple membrane protein, Methods Enzymol. 81: 668–678.CrossRefGoogle Scholar
  55. 55.
    Cronce, D. T., and Horrocks, W. DeW., 1992, Probing the metal-binding sites of cod paravalbumin using europium(III) ion luminescence and diffusion-enhanced energy transfer, Biochemistry 31: 7963–7969.CrossRefGoogle Scholar
  56. 56.
    Duportail, G., Merola, E, and Lianos, P., 1995, Fluorescence energy transfer in lipid vesicles. A time-resolved analysis using stretched exponentials, J. Photochem. Photobiol., Type=“Italic”>A: Chem. 89: 135–140.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations