Time-Resolved Energy Transfer and Conformational Distributions of Biopolymers

  • Joseph R. Lakowicz


In the previous chapter we described the principles of resonance energy transfer and how the phenomenon could be used as a “spectroscopic ruler” to measure distances between donor and acceptor sites on macromolecules. Energy transfer was described as a through-space interaction which occurred whenever the emission spectrum of the donor overlapped with the absorption spectrum of the acceptor. For a given donor—acceptor (D—A) pair, the efficiency of energy transfer decreases as r −6, where r is the D—A distance. Each D—A pair has a characteristic distance, the Förster distance (R 0), at which RET is 50% efficient. The extent of energy transfer, as seen from the steady-state data, can be used to measure the distance, to determine the extent of association based on proximity, or to determine the distance of closest approach between the D—A pair.


Energy Transfer Fluorescence Resonance Energy Transfer Distance Distribution Intensity Decay Bovine Pancreatic Trypsin Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haas, E., Wilchek, M., Katchalski-Katzir, E., and Steinberg, I. Z., 1975, Distribution of end-to-end distances of oligopeptides in solution as estimated by energy transfer, Proc. NatL Acad. Sci. U.S.A. 72: 1807–1811.CrossRefGoogle Scholar
  2. 2.
    Grinvald, A., Haas, E., and Steinberg, I. Z., 1972, Evaluation of the distribution of distances between energy donors and acceptors by fluorescence decay, Proc. Natl. Acad. Sci. U.S.A. 69: 2273–2277.CrossRefGoogle Scholar
  3. 3.
    Haas, E., Katchalski-Katzir, E., and Steinberg, I. Z., 1978, Brownian motion of the ends of oligopeptide chains in solution as estimated by energy transfer between chain ends, Biopolymers 17: 11–31.CrossRefGoogle Scholar
  4. 4.
    Wu, P., and Brand, L., 1994, Conformational flexibility in a staphylococcal nuclease mutant K45C from time-resolved resonance energy transfer measurements, Biochemistry 33: 10457–10462.CrossRefGoogle Scholar
  5. 5.
    Amir, D., Krausz, S., and Haas, E., 1992, Detection of local struc tures in reduced unfolded bovine pancreatic trypsin inhibitor, Proteins 13: 162–173.CrossRefGoogle Scholar
  6. 6.
    Amir, D., and Haas, E., 1986, Determination of intramolecular distance distributions in a globular protein by nonradiative excitation energy transfer measurements, Biopolymers 25: 235–240.CrossRefGoogle Scholar
  7. 7.
    Lakowicz, J. R., Wiczk, W., Gryczynski, I., and Johnson, M. L., 1990, Influence of oligopeptide flexibility on donor—acceptor distance distribution by frequency-domain fluorescence spectroscopy, Proc. SPIE 1204: 192–205.CrossRefGoogle Scholar
  8. 8.
    Haas, E., McWherter, C. A., and Scheraga, H. A., 1988, Conformational unfolding in the N-terminal region of ribonuclease A detected by nonradiative energy transfer: Distribution of interresidue distances in the native, denatured, and reduced-denatured states, Biopolymers 27: 1–21.CrossRefGoogle Scholar
  9. 9.
    She, M., Xing, J., Dong, W.-J., Umeda, P. K., and Cheung, H., 1998, Calcium binding to the regulatory domain of skeletal muscle troponin C induces a highly constrained open conformation, J. Mol. Biol. 281: 445–452 (1998).CrossRefGoogle Scholar
  10. 10.
    Dong, W-J., Chandra, M., Xing, J., She, M., Solaro, R. J., and Cheung, H. C., 1997, Phosphorylation induced distance change in a cardiac muscle troponin I mutant, Biochemistry 36: 6754–6761.CrossRefGoogle Scholar
  11. 11.
    Amir, D., and Haas, E., 1987, Estimation of intramolecular distance distributions in bovine pancreatic trypsin inhibitor by site-specific labeling and nonradiative excitation energy-transfer measurements, Biochemistry 26: 2162–2175.CrossRefGoogle Scholar
  12. 12.
    Amir, D., Levy, D. P., Levin, Y., and Haas, E., 1986, Selective fluorescent labeling of amino groups of bovine pancreatic trypsin inhibitor by reductive alkylation, Biopolymers 25: 1645–1658.CrossRefGoogle Scholar
  13. 13.
    Amir, D., Varshayski, L., and Haas, E., 1985, Selective fluorescent labeling at the a-amino group of bovine pancreatic trypsin inhibitor, Biopolymers 24: 623–638.CrossRefGoogle Scholar
  14. 14.
    Amir, D., and Haas, E., 1988, Reduced bovine pancreatic trypsin inhibitor has a compact structure, Biochemistry 27: 8889–8893.CrossRefGoogle Scholar
  15. 15.
    Maliwal, B. P., Lakowicz, J. R., Kupryszewski, G., and Rekowski, P., 1993, Fluorescence study of conformational flexibility of RNase S-peptide: Distance-distribution, end-to-end diffusion, and anisotropy decays, Biochemistry 32: 12337–12345.CrossRefGoogle Scholar
  16. 16.
    Cheung, H. C., Gryczynski, I., Malak, H., Wiczk, W., Johnson, M. L., and Lakowicz, J. R., 1991, Conformational flexibility of the Cys 697—Cys 707 segment of myosin subfragment 1. Distance distribuGoogle Scholar
  17. 17.
    Cheung, H. C., Wang, C.-K., Gryczynski, L, Wiczk, W, Laczko, G., Johnson, M. L., and Lakowicz, J. R., 1991, Distance distributions and anisotropy decays of troponin C and its complex with troponin I, Biochemistry 30: 5238–5247.CrossRefGoogle Scholar
  18. 18.
    Lakowicz, J. R., Gryczynski, I., Cheung, H. C., Wang, C.-K, Johnson, M. L., and Joshi, N., 1988, Distance distributions in proteins recovered by using frequency-domain fluorometry. Applications to troponin I and its complex with troponin C, Biochemistry 27: 9149–9160.CrossRefGoogle Scholar
  19. 19.
    Zhao, X., Kobayashi, T., Malak, H., Gryczynski, I., Lakowicz, J. R., Wade, R., and Collins, J. H., 1995, Calcium-induced troponin flexibility revealed by distance distribution measurements between engineered sites, J. BioL Chem. 270: 15507–15514.CrossRefGoogle Scholar
  20. 20.
    Eis, P. S., Kusba, J., Johnson, M. L., and Lakowicz, J. R., 1993, Distance distributions and dynamics of a zinc finger peptide from fluorescence resonance energy transfer measurements, J. Fluoresc. 3 (1): 23–31.CrossRefGoogle Scholar
  21. 21.
    Eis, P. S., and Lakowicz, J. R., 1993, Time-resolved energy transfer measurements of donoracceptor distance distributions and intra molecular flexibility of a CCHH zinc finger peptide, Biochemistry 32: 7981–7993.Google Scholar
  22. 22.
    Cheung, H. C., 1991, Resonance energy transfer, in Topics in Fluo rescence Spectroscopy, Volume 2, Principles, J. R. Lakowicz (ed.),Plenum Press, New York, pp. 127–176.Google Scholar
  23. 23.
    Lakowicz, J. R., Gryczynski, I., Wiczk, W., Laczko, G., Prendergast, F. C., and Johnson, M. L., 1990, Conformational distributions of melittin in water/methanol mixtures from frequency-domain measurements of nonradiative energy transfer, Biophys. Chem. 36: 99–115.CrossRefGoogle Scholar
  24. 24.
    Lakowicz, J. R., Gryczynski, I., Laczko, G., Wiczk, W., and Johnson, M. L., 1994, Distribution of distances between the tryptophan and the N-terminal residue of melittin in its complex with calmodulin, troponin C, and phospholipids, Protein Sci. 3: 628–637.CrossRefGoogle Scholar
  25. 25.
    Albaugh, S., and Steiner, R. F., 1989, Determination of distance distribution from time domain fluorometry, J. Phys. Chem. 93: 8013–8016.CrossRefGoogle Scholar
  26. 26.
    Haran, G., Haas, E., Szpikowska, B. K., and Mas, M. T., 1992, Domain motions in phosphoglycerate kinase: Determination of interdomain distance distributions by site-specific labeling and timeresolved fluorescence energy transfer, Proc. Natl. Acad. Sci. U.S.A. 89: 11764–11768.CrossRefGoogle Scholar
  27. 27.
    Lillo, M. P., Szpikowska, B. K., Mas, M. T., Sutin, J. D., and Beechem, J. M., 1997, Real-time measurement of multiple intramolecular distances during protein folding reactions: A multisite stopped-flow fluorescence energy-transfer study of yeast phosphoglycerate kinase, Biochemistry 36: 11273–11281.CrossRefGoogle Scholar
  28. 28.
    Lillo, M. P., Beechem, J. M., Szpikowska, B. K., Sherman, M. A., and Mas, M. T., 1997, Design and characterization of a multisite fluorescence energy-transfer system for protein folding studies: A steady-state and time-resolved study of yeast phosphoglycerate kinase, Biochemistry 36: 11261–11272.CrossRefGoogle Scholar
  29. 29.
    Katchalski-Katzir, E., Haas, E., and Steinberg, I. A., 1981, Study of conformation and intramolecular motility of polypeptides in solution by a novel fluorescence method, Ann. N.Y. Acad. Sci. 36: 44–61.CrossRefGoogle Scholar
  30. 30.
    Lakowicz, J. R., Johnson, M. L., Wiczk, W., Bhat, A., and Steiner, R. F, 1987, Resolution of a distribution of distances by fluorescence energy transfer and frequency-domain fluorometry, Chem. Phys. Lett. 138: 587–593.CrossRefGoogle Scholar
  31. 31.
    Kulinski, T., Wennerberg, A. B. A., Rigler, R., Provencher, S. W., Pooga, M., Langel, U., and Bartfai, T., 1997, Conformational analysis of glanin using end to end distance distribution observed by Förster resonance energy transfer, Eur. Biophys. J. 26: 145–154.CrossRefGoogle Scholar
  32. 32.
    Rice, K. G., Wu, P., Brand, L., and Lee, Y. C., 1991, Interterminal distance and flexibility of a triantennary glycopeptide as measured by resonance energy transfer, Biochemistry 30: 6646–6655.CrossRefGoogle Scholar
  33. 33.
    Lakowicz, J. R., Kusba, J., Wiczk, W., Gryczynski, I., and Johnson, M. L., 1990, End-to-end diffusion of a flexible bichromophoric molecule observed by intramolecular energy transfer and frequency domain fluorometry, Chem. Phys. Lett. 173: 319–326.CrossRefGoogle Scholar
  34. 34.
    Lakowicz, J. R., Gryczynski, I., Kusba, J., Wiczk, W., Szmacinski, H., and Johnson, M. L., 1994, Site-to-site diffusion in proteins as observed by energy transfer and frequency domain fluorometry, Photochem. Photobiol. 59: 16–29.CrossRefGoogle Scholar
  35. 35.
    Kugba, J., and Lakowicz, J. R., 1994, Diffusion-modulated energy transfer and quenching: Analysis by numerical integration of diffusion equation in Laplace space, Methods Enzymol. 240: 216–262.CrossRefGoogle Scholar
  36. 36.
    Lakowicz, J. R., KuSba, J., Wiczk, W., Gryczynski, I., Szmacinski, H., and Johnson, M. L., 1991, Resolution of the conformational distribution and dynamics of a flexible molecule using frequency domain fluorometry, Biophys. Chem. 39: 79–84.CrossRefGoogle Scholar
  37. 37.
    Lakowicz, J. R., Wiczk, W., Gryczynski, I., Szmacinski, H., and Johnson, M. L., 1990, Influence of end-to-end diffusion on intra-molecular energy transfer as observed by frequency-domain fluorometry, Biophys. Chem. 38: 99–109.CrossRefGoogle Scholar
  38. 38.
    Somogyi, B., Matko, J., Papp, S., Hevessy, J., Welch, G. R., and Damjanovich, S., 1984, Förster-type energy transfer as a probe for changes in local fluctuations of the protein matrix, Biochemistry 23: 3404–3411.CrossRefGoogle Scholar
  39. 39.
    Gerstein, M., Lesk, A. M., and Chothia, C., 1994, Structural mechanisms for domain movements in proteins, Biochemistry 33: 6738–6749.CrossRefGoogle Scholar
  40. 40.
    Blackwell, M. F., Gounaris, K., Zara, S. J., and Barber, J., 1987, A method for estimating lateral diffusion coefficients in membranes from steady state fluorescence quenching studies, J. Biophys. Soc. 51: 735–744.CrossRefGoogle Scholar
  41. 41.
    Ollmann, M., Schwarzmann, G., Sandhoff, K., and Galla, H-J., 1987, Pyrene-labeled gangliosides: Micelle formation in aqueous solution, lateral diffusion, and thermotropic behavior in phosphatidylcholine bilayers, Biochemistry 26: 5943–5952.CrossRefGoogle Scholar
  42. 42.
    Buckler, D. R., Haas, E., and Scheraga, H. A., 1995, Analysis of the structure of ribonuclease A in native and partially denatured states by time-resolved nonradiative dynamic excitation energy transfer between site-specific extrinsic probes, Biochemistry 34: 15965–15978.CrossRefGoogle Scholar
  43. 43.
    Sabbatini, N., Guardigli, M., and Lehn, J.-M., 1993, Luminescent lanthanide complexes as photochemical supramolecular devices, Coordi. Chem. Rev. 123: 201–228.CrossRefGoogle Scholar
  44. 44.
    Demas, J. N., and DeGraff, B. A., 1992, Applications of highly luminescent transition metal complexes in polymer systems, MacromoL Chem. Macromol. Symp. 59: 35–51.CrossRefGoogle Scholar
  45. 45.
    Hochstrasser, R. A., Chen, S.-M., and Millar, D. P., 1992, Distance distribution in a dye-linked oligonucleotide determined by time-resolved fluorescence energy transfer, Biophys. Chem. 45: 133–141.CrossRefGoogle Scholar
  46. 46.
    Yang, M., and Millar, D. P., 1997, Fluorescence resonance energy transfer as a probe of DNA structure and function, Methods Enzymol. 278: 417–444.CrossRefGoogle Scholar
  47. 47.
    Eis, P. S., and Millar, D. P., 1993, Conformational distributions of a four-way DNA junction revealed by time-resolved fluorescence resonance energy transfer, Biochemistry 32: 13852–13860.CrossRefGoogle Scholar
  48. 48.
    Clegg, R. M., Murchie, A. I. H., and Lilley, D. M., 1994, The solution structure of the four-way DNA junction at low-salt conditions: A fluorescence resonance energy transfer analysis, Biophys. J. 66: 99109.CrossRefGoogle Scholar
  49. 49.
    Yang, M., and Millar, D. P., 1996, Conformational flexibility of three-way DNA junctions containing unpaired nucleotides, Biochemistry 35: 7959–7967.CrossRefGoogle Scholar
  50. 50.
    Beecham, J. M., and Haas, E., 1989, Simulations determination of intramolecular distance distributions and conformational dynamics by global analysis of energy transfer measurements, Biophys. J. 55: 1225–1236.CrossRefGoogle Scholar
  51. 51.
    Ohmine, I., Silbey, R., and Deutch, J. M., 1997, Energy transfer in labeled polymer chains in semidilute solutions, Macromolecules 10: 862–864.CrossRefGoogle Scholar
  52. 52.
    Lakowicz, J. R., Gryczynski, I., Wiczk, W., Kutba, J., and Johnson, M. L., 1991, Correction for incomplete labeling in the measurement of distance distributions by frequency-domain fluorometry, Anal. Biochem. 195: 243–254.Google Scholar
  53. 53.
    Englert, A., and Leclerc, M., 1978, Intramolecular energy transfer in molecules with a large number of conformations, Proc. Natl. Acad. Sci. U.S.A. 75: 1050–1051.CrossRefGoogle Scholar
  54. 54.
    Wu, P., and Brand, L., 1992, Orientation factor in steady state and time-resolved resonance energy transfer measurements, Biochemistry 31: 7939–7947.CrossRefGoogle Scholar
  55. 55.
    Dos Remedios, C. G., and Moens, P. D. J., 1995, Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins, J. Struct. Biol. 115: 175–185.CrossRefGoogle Scholar
  56. 56.
    Cantor, C. R., and Pechukas, E, 1971, Determination of distance distribution functions by singlet—singlet energy transfer, Proc. Natl. Acad. Sci. U.S.A. 68: 2099–2101.CrossRefGoogle Scholar
  57. 57.
    Wizk, W., Eis, P. S., Fishman, M. N., Johnson, M. L., and Lakowicz, J. R., 1991, Distance distributions recovered from steady-state fluorescence measurements on thirteen donor—acceptor pairs with different Förster distances, J. Fluoresc. 1 (4): 273–286.CrossRefGoogle Scholar
  58. 58.
    Gryczynski, I., Wiczk, W., Johnson, M. L., and Lakowicz, J. R., 1988, End-to-end distance distributions of flexible molecules from steady state fluorescence energy transfer and quenching induced changes in the Förster distance, Chem. Phys. Lett. 145: 439–446.CrossRefGoogle Scholar
  59. 59.
    Gryczynski, I., Wiczk, W., Johnson, M. L., Cheung, H. C., Wang, C., and Lakowicz, J. R., 1988, Resolution of the end-to-end distance distribution of flexible molecules using quenching-induced variations of the Förster distance for fluorescence energy transfer, Biophys. J. 54: 577–586.CrossRefGoogle Scholar
  60. 60.
    Selvin, P. R., and Hearst, J. E., 1994, Luminescence energy transfer using a terbium chelate: Improvements on fluorescence energy transfer, Proc. Natl. Acad. Sci. U.S.A. 91: 10024–10028.CrossRefGoogle Scholar
  61. 61.
    Selvin, P. R., Rana, T. M., and Hearst, J. E., 1994, Luminescence resonance energy transfer, J. Am. Chem. Soc. 116: 6029–6030.CrossRefGoogle Scholar
  62. 62.
    Selvin, P. R., 1995, Fluorescence resonance energy transfer, Methods Enzymol. 246: 301–334.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations