Advanced Anisotropy Concepts

  • Joseph R. Lakowicz


In the preceding two chapters we described steady-state and time-resolved anisotropy measurements and presented a number of biochemical examples which illustrated the types of information available from these measurements. Throughout these chapters, we stated that anisotropy decay depends on the size and shape of the rotating species. However, the theory which relates the form of the anisotropy decay to the shape of the molecule is complex and was not described in detail. In the present chapter we provide an overview of the rotational properties of nonspherical molecules, as well as representative examples.


Correlation Time Fluorescence Anisotropy Rotational Diffusion Transition Moment Rotational Correlation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perrin, F., 1929, Mouvement brownien d’un ellipsoide (I). Dispersion diélectrique pour des molécules ellipsoidales, J. Phys. Radium 10: 497–511.Google Scholar
  2. 2.
    Perrin, F., 1936, Mouvement brownien d’un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales, J. Phys. Radium 1:1–11.Google Scholar
  3. 3.
    Perrin, F., 1936, Diminution de la polarisation de la fluorescence des solutions résultant du mouvement brownien de rotation, Acta Phys. Pol. 5: 335–345.Google Scholar
  4. 4.
    Perrin, F., 1929, La fluorescence des solutions. Induction moléculaire—polarisation et durée d’émission—photochimie, Ann. Phys. 12: 169–275.Google Scholar
  5. 5.
    Lombardi, J. R., and Daffom, G. A., 1966, Anisotropic rotational relaxation in rigid media by polarized photoselection, J. Chem. Phys. 44: 3882–3887.CrossRefGoogle Scholar
  6. 6.
    Tao, T., 1969, Time-dependent fluorescence depolarization and Brownian rotational diffusion of macromolecules, Biopolymers 8: 609–632.CrossRefGoogle Scholar
  7. 7.
    Ehrenberg, M., and Rigler, R., 1972, Polarized fluorescence and rotational Brownian motion, Chem. Phys. Lett. 14: 539–544.CrossRefGoogle Scholar
  8. 8.
    Chuang, T. J., and Eisenthal, K. B., 1972, Theory of fluorescence depolarization by anisotropie rotational diffusion, J. Chem. Phys. 57: 5094–5097.CrossRefGoogle Scholar
  9. 9.
    Belford, G. G., Belford, R. L., and Weber, G., 1972, Dynamics of fluorescence polarization in macromolecules, Proc. Natl. Acad. Sci. U.S.A. 69: 1392–1393.CrossRefGoogle Scholar
  10. 10.
    Small, E. W., and Isenberg, I., 1977, Hydrodynamic properties of a rigid molecule: Rotational and linear diffusion and fluorescence anisotropy, Biopolymers 16: 1907–1928.CrossRefGoogle Scholar
  11. 11.
    Steiner, R. F., 1991, Fluorescence anisotropy: Theory and applications, in Topics in Fluorescence Spectroscopy, Volume 2, Principles, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1–52.Google Scholar
  12. 12.
    Brand, L., Knutson, J. R., Davenport, L., Beechem, J. M., Dale, R. E., Walbridge, D. G., and Kowalczyk, A. A., 1985, Time-resolved fluorescence spectroscopy: Some applications of associative behaviour to studies of proteins and membranes, in Spectroscopy and the Dynamics of Molecular Biological Systems, P. Bayley and R. E. Dale (eds.), Academic Press, London, pp. 259–305.Google Scholar
  13. 13.
    Barkley, M. D., Kowalczyk, A. A., and Brand, L., 1981, Fluorescence decay studies of anisotropic rotations: Internal motions in DNA, in Biomolecular Stereodynamics, Vol. 1, R. H. Sarma (ed.), Adenine Press, New York, pp. 391–403.Google Scholar
  14. 14.
    Beechem, J. M., Knutson, J. R., and Brand, L., 1986, Global analysis of multiple dye fluorescence anisotropy experiments on proteins, Biochem. Soc. Trans. 14: 832–835.