Time-Dependent Anisotropy Decays

  • Joseph R. Lakowicz


In the preceding chapter we described the measurement and interpretation of steady-state fluorescence anisotropies. These values are measured using continuous illumination and represent an average of the anisotropy decay over the intensity decay. Measurement of steady-state anisotropies is simple, but interpretation of the steady-state anisotropies usually depends on an assumed form for the anisotropy decay, which is not directly observed in the experiment. Additional information is available if one measures the time-dependent anisotropy, that is, the values of r(t) following pulsed excitation. The form of the anisotropy decay depends on the size, shape, and flexibility of the labeled molecule, and the data can be compared with the decays calculated from various molecular models. Anisotropy decays can be obtained using the TD or the FD method.


Correlation Time Yellow Fluorescent Protein Fluorescence Anisotropy Rotational Diffusion Intensity Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lakowicz, J. R., Cherek, H., Kusba, J., Gryczynski, I., and Johnson, M. L., 1993, Review of fluorescence anisotropy decay analysis by frequency-domain fluorescence spectroscopy, J. Fluoresc. 3 (2): 103–116.CrossRefGoogle Scholar
  2. 2.
    Lakowicz, J. R., and Gryczynski, I., 1991, Frequency-domain fluorescence spectroscopy, in Topics in Fluorescence Spectroscopy, Volume 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 293–355.Google Scholar
  3. 3.
    Spencer, R. D., and Weber, G., 1970, Influence of Brownian rotations and energy transfer upon the measurement of fluorescence lifetimes, J. Chem. Phys. 52: 1654–1663.CrossRefGoogle Scholar
  4. 4.
    Szymanowski, W., 1935, Einfluss der Rotation der Molekule auf die Messungen der Abklingzert des Fluoreszenzstrahlung, Z. Phys. 95: 466–473.CrossRefGoogle Scholar
  5. 5.
    Kudryashov, P. I., Sveshnikov, B. Y, and Shirokov, V. I., 1960, The kinetics of the concentration depolarization of luminescence and of the intermolecular transfer of excitation energy, Opt. Spectrosc. 9: 177–181.Google Scholar
  6. 6.
    Bauer, R. K., 1963, Polarization and decay of fluorescence of solutions, Z Naturforsch. A 18: 718–724.Google Scholar
  7. 7.
    Cross, A. J., and Fleming, G. R., 1984, Analysis of time-resolved fluorescence anisotropy decays, Biophys. J. 46: 45–56.CrossRefGoogle Scholar
  8. 8.
    Wahl, P. 1979, Analysis of fluorescence anisotropy decays by least square method, Biophys. Chem. 10: 91–104.CrossRefGoogle Scholar
  9. 9.
    Taylor, J. R., 1982, An Introduction to Error Analysis, University Science Books, Mill Valley, California, pp. 173–187.Google Scholar
  10. 10.
    Dale, R. E., Chen, L. A., and Brand, L., 1977, Rotational relaxation of the “microviscosity” probe diphenylhexatriene in paraffin oil and egg lecithin vesicles, J. Am. Chem. Soc. 252: 7500–7510.Google Scholar
  11. 11.
    Papenhuijzen, J., and Visser, A. J. W. G., 1983, Simulation of convoluted and exact emission anisotropy decay profiles, Biophys. Chem. 17: 57–65.CrossRefGoogle Scholar
  12. 12.
    Gilbert, C. W., 1983, A vector method for the non-linear least squares reconvolution-and-fitting analysis of polarized fluorescence decay data, in Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, R. B. Cundall, and R. E. Dale (eds.), Plenum Press, New York, pp. 605–606.Google Scholar
  13. 13.
    Beechem, J. M., and Brand, L., 1986, Global analysis of fluorescence decay: Applications to some unusual experimental and theoretical studies, Photochem. Photobiol. 44: 323–329.CrossRefGoogle Scholar
  14. 14.
    Crutzen, M., Ameloot, M., Boens, N., Negri, R. M., and De Schryver, E C., 1993, Global analysis of unmatched polarized fluorescence decay curves, J. Phys. Chem. 97: 8133–8145.CrossRefGoogle Scholar
  15. 15.
    Vos, K., van Hoek, A., and Visser, A. J. W. G., 1987, Application of a reference convolution method to tryptophan fluorescence in proteins, Eur. J. Biochem. 165: 55–63.CrossRefGoogle Scholar
  16. 16.
    Weber, G., 1971, Theory of fluorescence depolarization by anisotropic Brownian rotations. Discontinuous distribution approach, J. Chem. Phys. 55: 2399–2407.CrossRefGoogle Scholar
  17. 17.
    Merkelo, H., Hammond, J. H., Hartman, S. R., and Derzko, Z. I., 1970, Measurement of the temperature dependence of depolarization time of luminescence, J. Lumin. 2: 502–512.CrossRefGoogle Scholar
  18. 18.
    Lakowicz, J. R., Prendergast, F. G., and Hogen, D., 1979, Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers: Quantitation of hindered depolarizing rotations, Biochemistry 18: 508–519.CrossRefGoogle Scholar
  19. 19.
    Reinhart, G. D., Mazzola, P., Jameson, D. M., and Gratton, E., 1991, A method for on-line background subtraction in frequency domain fluorometry, J. Fluoresc. 1 (3): 153–162.CrossRefGoogle Scholar
  20. 20.
    Belford, G. G., Belford, R. L., and Weber, G., 1972, Dynamics of fluorescence polarization in macromolecules, Proc. Natl. Acad. Sci. U.S.A. 69: 1392–1393.CrossRefGoogle Scholar
  21. 21.
    Chuang, T. J., and Eisenthal, K. B., 1972, Theory of fluorescence depolarization by anisotropic rotational diffusion, J. Chem. Phys. 57: 5094–5097.CrossRefGoogle Scholar
  22. 22.
    Ehrenberg, M., and Rigler, R., 1972, Polarized fluorescence and rotational Brownian diffusion, Chem. Phys. Lett. 14: 539–544.CrossRefGoogle Scholar
  23. 23.
    Tao, T., 1969, Time-dependent fluorescence depolarization and Brownian rotational diffusion of macromolecules, Biopolymers 8: 609–632.CrossRefGoogle Scholar
  24. 24.
    Lombardi, J. R., and Dafforn, G. A., 1966, Anisotropic rotational relaxation in rigid media by polarized photoselection, J. Chem. Phys. 44: 3882–3887.CrossRefGoogle Scholar
  25. 25.
    Small, E. W., and Isenberg, I., 1977, Hydrodynamic properties of a rigid molecule: Rotational and linear diffusion and fluorescence anisotropy, Biopolymers 16: 1907–1928.CrossRefGoogle Scholar
  26. 26.
    Steiner, R. F., 1991, Fluorescence anisotropy: Theory and applications, in Topics in Fluorescence Spectroscopy, Volume 2, Principles, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1–52.Google Scholar
  27. 27.
    Veatch, W. R., and Stryer, L., 1977, Effect of cholesterol on the rotational mobility of diphenylhexatriene in liposomes: A nanosecond fluorescence anisotropy study, J. Mol. Biol. 117: 1109–1113.CrossRefGoogle Scholar
  28. 28.
    Chen, L. A., Dale, R. E., Roth, S., and Brand, L., 1977, Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of “microviscosity,” J. Biol. Chem. 252: 2163–2169.Google Scholar
  29. 29.
    Kawato, S., Kinosita, K., and Ikegami, A., 1978, Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayers studied by nanosecond fluorescence techniques, Biochemistry 17: 5026–5031.CrossRefGoogle Scholar
  30. 30.
    Hildenbrand, K., and Nicolau, C., 1979, Nanosecond fluorescence anisotropy decays of 1,6-diphenyl-1,3,5-hexatriene in membranes, Biochim. Biophys. Acta 553: 365–377.CrossRefGoogle Scholar
  31. 31.
    Kinosita, K., Kawato, S., and Ikegami, A., 1977, A theory of fluorescence polarization decay in membranes, Biophys. J. 20: 289–305.CrossRefGoogle Scholar
  32. 32.
    Kinosita, K., Ikegami, A., and Kawato, S., 1982, On the wobbling- 49. in-cone analysis of fluorescence anisotropy decay, Biophys. J. 37: 461–464.CrossRefGoogle Scholar
  33. 33.
    Komura, S., Ohta, Y., and Kawato, S., 1990, A theory of optical anisotropy decay in membranes, J. Phys. Soc. Jpn. 59: 2584–2595.CrossRefGoogle Scholar
  34. 34.
    Wallach, D., 1967, Effects of intemal rotation on angular correlation functions, J. Chem. Phys. 47: 5258–5268.CrossRefGoogle Scholar
  35. 35.
    Gottlieb, Y. Ya., and Wahl, P., 1963, Etude théorique de la polarisation de fluorescence des macromolecules portant un groupe émetteur mobile autour d’un axe de rotation, J. Chio. Phys. 60: 849–856.Google Scholar
  36. 36.
    Lapari, G., and Szabo, A., 1980, Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes, Biophys. J. 30: 489–506.CrossRefGoogle Scholar
  37. 37.
    Vincent, M., and Gallay, J., 1991, The interactions of horse heart apocytochrome c with phospholipid vesicles and surfactant micelles: Time-resolved fluorescence study of the single tryptophan residue (Trp-59), Eur. Biophys. J. 20: 183–191.CrossRefGoogle Scholar
  38. 38.
    Pap, E. H. W., Ter Horst, J. J., Van Hoek, A., and Visser, A. J. W. G., 1994, fluorescence dynamics of diphenyl-1,3,5-hexatriene-labeled phospholipids in bilayer membranes, Biophys. Chem. 48: 337–351.Google Scholar
  39. 39.
    Gryczynski, I., Johnson, M. L., and Lakowicz, J. R., 1994, Analysis of anisotropy decays in terms of correlation time distributions, measured by frequency-domain fluorometry, Biophys. Chem. 52: 113.CrossRefGoogle Scholar
  40. 40.
    Peng, K., Visser, A. J. W. G., van Hoek, A., Wolfs, C. J. A. M., Sanders, J. C., and Hemminga, M. A., 1990, Analysis of time-resolved fluorescence anisotropy in lipid—protein systems. I. Application to the lipid probe octadecyl rhodamine B in interaction with bacteriophage M13 coat protein incorporated in phospholipid bilayers, Eur. Biophys. J. 18: 277–283.CrossRefGoogle Scholar
  41. 41.
    Visser, A. J. W. G., Van Hoek, A., and Van Paridon, P. A., 1987, Time-resolved fluorescence depolarization studies of parinaroyl phosphatidylcholine in Triton X-100 micelles and rat skeletal muscle membranes, in Membrane Receptors, Dynamics, and Energetics, K. W. A. Wirtz (ed.), Plenum Press, New York, pp. 353–361.Google Scholar
  42. 42.
    Brand, L., Knutson, J. R., Davenport, L., Beechem, J. M., Dale, R. E., Walbridge, D. G., and Kowalczyk, A. A., 1985, Time-resolved fluorescence spectroscopy: Some applications of associative behaviour to studies of proteins and membranes, in Spectroscopy and the Dynamics of Molecular Biological Systems, P. Bayley and R. E. Dale (Eds.), Academic Press, London, pp. 259–305.Google Scholar
  43. 43.
    Ruggiero, A., and Hudson, B., 1989, Analysis of the anisotropy decay of trans-parinaric acid in lipid bilayers, Biophys. J. 55: 1125–1135.CrossRefGoogle Scholar
  44. 44.
    Shinitzky, M., and Barenholz, Y., 1978, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta 515: 367–394.CrossRefGoogle Scholar
  45. 45.
    Kawato, S., Kinosita, K., and Ikegami, A., 1977, Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques, Biochemistry 16: 2319–2324.CrossRefGoogle Scholar
  46. 46.
    Stubbs, C. D., and Williams, B. W., 1992, Fluorescence in membranes, in Topics in Fluorescence Spectroscopy, Volume 3, Biochemical Applications, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 231–271.Google Scholar
  47. 47.
    Stubbs, C. D., Kouyama, T., Kinosita, K., and Ikegami, A., 1981, Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers, Biochemistry 20: 4257–4262.CrossRefGoogle Scholar
  48. 48.
    Ameloot, M., Hendrickx, H., Herreman, W., Pottel, H., Van Cauwelaert, E, and van der Meer, W., 1984, Effect of orientational order 66. on the decay of fluorescence anisotropy in membrane suspensions, Biophys. J. 46: 525–539.CrossRefGoogle Scholar
  49. 49.
    Vincent, M., de Foresta, B., Gallay, J., and Alfsen, A., 1982, Nanosecond fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles with regard to isotropic solvents, Biochemistry 21: 708–716.CrossRefGoogle Scholar
  50. 50.
    Pal, R., Petri, W. A., Ben-Yashar, V., Wagner, R. R., and Barenholz, Y., 1985, Characterization of the fluorophore 4-heptadecyl-7-hydroxycoumarin: A probe for the head-group region of lipid bilayers and biological membranes, Biochemistry 24: 573–581.CrossRefGoogle Scholar
  51. 51.
    Wolber, P. K., and Hudson, B. S., 1981, Fluorescence lifetime and time-resolved polarization anisotropy studies of acyl chain order and dynamics in lipid bilayers, Biochemistry 20: 2800–2810.CrossRefGoogle Scholar
  52. 52.
    Davenport, L., and Targowski, P., 1996, Submicrosecond phospholipid dynamics using a long-lived fluorescence emission anisotropy probe, Biophys. J. 71: 1837–1852.CrossRefGoogle Scholar
  53. 53.
    Kinosita, K., Kawato, S., and Ikegami, A., 1984, Dynamic structure of biological and model membranes: Analysis by optical anisotropy decay measurements, Adv. Biophys. 17: 147–203.CrossRefGoogle Scholar
  54. 54.
    Jähnig, F., 1979, Structural order of lipids and proteins in membranes: Evaluation of fluorescence anisotropy data, Proc. Natl. Acad. Sci. U.S.A. 76: 6361–6365.CrossRefGoogle Scholar
  55. 55.
    Heyn, M. E, 1979, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments, FEBS Lett. 108: 359–364.CrossRefGoogle Scholar
  56. 56.
    Van Blitterswijk, W. J., Van Hoeven, R. P., and Van Der Meer, B. W., 1981, Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements, Biochim. Biophys. Acta 644: 323–332.CrossRefGoogle Scholar
  57. 57.
    Best, L., John, E., and Jähnig, E, 1987, Order and fluidity of lipid membranes as determined by fluorescence anisotropy decay, Eue Biophys. J. 15: 87–102.Google Scholar
  58. 58.
    Lakowicz, J. R., Cherek, H., Maliwal, B. E, and Gratton, E., 1985, Time-resolved fluorescence anisotropies of diphenylhexatriene and perylene in solvents and lipid bilayers obtained from multifrequency phase-modulation fluorometry, Biochemistry 24: 376–383.CrossRefGoogle Scholar
  59. 59.
    Faucon, J. F., and Lakowicz, J. R., 1987, Anisotropy decay of diphenylhexatriene in melittin—phospholipid complexes by multi-frequency phase-modulation fluorometry, Arch. Biochem. Biophys. 252: 245–258.CrossRefGoogle Scholar
  60. 60.
    Lakowicz, J. R., 1985, Frequency-domain fluorometry for resolution of time-dependent fluorescence emission, Spectroscopy 1: 28–37.Google Scholar
  61. 61.
    Ross, J. A., Schmidt, C. J., and Brand, L., 1981, Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase, Biochemistry 20: 4369–4377.CrossRefGoogle Scholar
  62. 62.
    Vincent, M., Deveer, A.-M., De Haas, G. H., Verheij, H. M., and Gallay, J., 1993, Stereospecificity of the interaction of porcine pancreatic phospholipase A2 with micellar and monomeric inhibitors, Eue. J. Biochem. 215: 531–539.CrossRefGoogle Scholar
  63. 63.
    Bouhss, A., Vincent, M., Munier, H., Gilles, A.-M., Takahashi, M., Barzu, O., Danchin, A., and Gallay, J., 1996, Conformational transitions within the calmodulin-binding site of Bordetella pertussis adenylate cyclase studied by time-resolved fluorescence of Trp242 and circular dichroism, Eue J. Biochem. 237: 619–628.CrossRefGoogle Scholar
  64. 64.
    Kulinski, T., and Visser, A. J. W. G., 1987, Spectroscopic investigations of the single tryptophan residue and of riboflavin and 7-oxalumazine bound to lumazine apoprotein from Photobacterium leiognathi, Biochemistry 26: 540–549.CrossRefGoogle Scholar
  65. 65.
    Rischel, C., Thyberg, P., Rigler, R., and Poulsen, F. M., 1996, Time-resolved fluorescence studies of the molten globule state of apomyoglobin, J. Mol. Biol. 257: 877–885.CrossRefGoogle Scholar
  66. 66.
    Axelsen, P. H., Gratton, E., and Prendergast, E. G., 1991, Experimentally verifying molecular dynamics simulations through fluorescence anisotropy measurements, Biochemistry 30: 1173–1179.CrossRefGoogle Scholar
  67. 67.
    Fa, M., Karolin, J., Aleshkov, S., Strandberg, L., Johansson, L. B.-A., and Ny, T., 1995, Time-resolved polarized fluorescence spectroscopy studies of plasminogen activator inhibitor type I: Conformational changes of the reactive center upon interactions with target proteases, vitronectin and heparin, Biochemistry 34: 13833–13840.CrossRefGoogle Scholar
  68. 68.
    Broos, J., Visser, A. J. W. G., Engbersen, F. J., Verboom, W., van Hoek, A., and Reinhoudt, D. N., 1995, Flexibility of enzymes suspended in organic solvents probed by time-resolved fluorescence anisotropy. Evidence that enzyme activity and enantioselectivity are directly related to enzyme flexibility, J. Am. Chem. Soc. 117: 12657–12663.CrossRefGoogle Scholar
  69. 69.
    Yguerabide, J., Epstein, H. F., and Stryer, L., 1970, Segmental flexibility in an antibody molecule, J. Mol. Biol. 51: 573–590.CrossRefGoogle Scholar
  70. 70.
    Hanson, D. C., Yguerabide, J., and Schumaker, V. N., 1981, Segmental flexibility of immunoglobulin G antibody molecules in solution: A new interpretation, Biochemistry 20: 6842–6852.CrossRefGoogle Scholar
  71. 71.
    Wahl, P., 1969, Mesure de la décroissance de la fluorescence polarisée de la y-globuline-1-sulfonyl-5-diméthylaminonaphtalène, Biochim. Biophys. Acta 175: 55–64.CrossRefGoogle Scholar
  72. 72.
    Wahl, P., Kasai, M., and Changuex, J.-R, 1971, A study of the motion of proteins in excitable membrane fragments by nanosecond fluorescence polarization spectroscopy, Eur. J. Biochem. 18: 332–341.CrossRefGoogle Scholar
  73. 73.
    Brochon, J.-C., and Wahl, P., 1972, Mesures des déclins de l’anisotropie de fluorescence de la y-globuline et de ses fragments Fab, Fc et F(ab)2 marqués avec le 1-sulfonyl-5-diméthyl-aminonaphtalène, Eur. J. Biochem. 25: 20–32.CrossRefGoogle Scholar
  74. 74.
    Holowka, D., Wensel, T., and Baird, B., 1990, A nanosecond fluorescence depolarization study on the segmental flexibility of receptor-bound immunoglobulin E, Biochemistry 29: 4607–4612.CrossRefGoogle Scholar
  75. 75.
    Visser, A. J. G., van Hoek, A., Visser, N. V., Lee, Y., and Ghisia, S., 1997, Time-resolved fluorescence study of the dissociation of FMN from the yellow fluorescence protein from Vibrio fischeri, Photochem. Photobiol. 65: 570–575.CrossRefGoogle Scholar
  76. 76.
    Lakowicz, J. R., Laczko, G., Gryczynski, I., and Cherek, H., 1986, Measurement of subnanosecond anisotropy decays of protein fluorescence using frequency-domain fluorometry, J. Biol. Chem. 261: 2240–2245.Google Scholar
  77. 77.
    Maliwal, B. P., and Lakowicz, J. R., 1986, Resolution of complex anisotropy decays by variable frequency phase-modulation fluorometry: A simulation study, Biochim. Biophys. Acta 873: 161–172.CrossRefGoogle Scholar
  78. 78.
    Maliwal, B. P., Hermetter, A., and Lakowicz, J. R., 1986, A study of protein dynamics from anisotropy decays obtained by variable frequency phase-modulation fluorometry: Internal motions of Nmethylanthraniloyl melittin, Biochim. Biophys. Acta 873: 173–181.CrossRefGoogle Scholar
  79. 79.
    Lakowicz, J. R., Laczko, G., and Gryczynski, I., 1987, Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry, Biochemistry 26: 82–90.CrossRefGoogle Scholar
  80. 80.
    Lakowicz, J. R., Laczko, G., and Gryczynski, I., 1986, Picosecond resolution of oxytocin tyrosyl fluorescence by 2 GHz frequency-domain fluorometry, Biophys. Chem 24: 97–100.CrossRefGoogle Scholar
  81. 81.
    Lakowicz, J. R., Gratton, E., Cherek, H., Maliwal, B. P., and Laczko, G., 1984, Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore—protein complex using frequency-domain phase-modulation fluorometry, J. Biol. Chem. 259: 10967–10972.Google Scholar
  82. 82.
    Matayoshi, E. D., Sawyer, W. H., and Jovin, T. M., 1991, Rotational diffusion of band 3 in erythrocyte membranes. 2. Binding of cytoplasmic enzymes, Biochemistry 30: 3538–3543.CrossRefGoogle Scholar
  83. 83.
    Pecht, I., Ortega, E., and Jovin, T. M., 1991, Rotational dynamics of the Fc receptor on mast cells monitored by specific monoclonal antibodies and IgE, Biochemistry 30: 3450–3458.CrossRefGoogle Scholar
  84. 84.
    Shi, Y., Karon, B. S., Kutchai, H., and Thomas, D. D., 1996, Phospholamban-dependent effects of C12E8 on calcium transport and molecular dynamics in cardiac sarcoplasmic reticulum, Biochemistry 35: 13393–13399.CrossRefGoogle Scholar
  85. 85.
    Karon, B. S., Geddis, L. M., Kutchai, H., and Thomas, D. D., 1995, Anesthetics alter the physical and functional properties of the Ca-ATPase in cardiac sarcoplasmic reticulum, Biophys. J. 68: 936945.Google Scholar
  86. 86.
    Voss, J. C., Mahaney, J. E., and Thomas, D. D., 1995, Mechanism of Ca-ATPase inhibition by melittin in skeletal sarcoplasmic reticulum, Biochemistry 34: 930–939.CrossRefGoogle Scholar
  87. 87.
    Terpetschnig, E., Szmacinski, H., and Lakowicz, J. R., 1997, Long-lifetime metal—ligand complexes as probes in biophysics and clinical chemistry, Methods Enzymol. 278: 295–321.CrossRefGoogle Scholar
  88. 88.
    Li, L., Szmacinski, H., and Lakowicz, J. R., 1997, Synthesis and luminescence spectral characterization of long-lifetime lipid metal—ligand probes, Anal. Biochem. 244: 80–85.CrossRefGoogle Scholar
  89. 89.
    Guo, X.-Q., Castellano, F. N., Li, L., Szmacinski, H., Lakowicz, J. R., and Sipior, J., 1997, A long-lived, highly luminescent Re(I) metal—ligand complex as a biomolecular probe, Anal. Biochem. 254: 179–186.CrossRefGoogle Scholar
  90. 90.
    DeGraff, B. A., and Demas, J. N., 1994, Direct measurement of rotational correlation times of luminescent ruthenium (II) molecular probes by differential polarized phase fluorometry, J. Phys. Chem. 98: 12478–12480.CrossRefGoogle Scholar
  91. 91.
    Wahl, P., Paoletti, J., and Le Pecq, J.-B., 1970, Decay of fluorescence emission anisotropy of the ethidium bromide—DNA complex evidence for an internal motion in DNA, Proc. Natl. Acad. Sci. U.S.A. 65: 417–421.CrossRefGoogle Scholar
  92. 92.
    Millar, D. P., Robbins, R. J., and Zewail, A. H., 1981, Time-resolved spectroscopy of macromolecules: Effect of helical structure on the torsional dynamics of DNA and RNA, J. Chem. Phys. 74: 4200–4201.CrossRefGoogle Scholar
  93. 93.
    Ashikawa, I., Kinosita, K., Ikegami, A., Nishimura, Y., Tsuboi, M., Watanabe, K., Iso, K., and Nakano, T., 1983, Internal motion of deoxyribonucleic acid in chromatin. Nanosecond fluorescence studies of intercalated ethidium, Biochemistry 22: 6018–6026.CrossRefGoogle Scholar
  94. 94.
    Wang, J., Hogan, M., and Austin, R. H., 1982, DNA motions in the nucleosome core particle, Proc. Natl. Acad. Sci. U.S.A. 79: 5896–5900.CrossRefGoogle Scholar
  95. 95.
    Magde, D., Zappala, M., Knox, W. H., and Nordlund, T. M., 1983, Picosecond fluorescence anisotropy decay in the ethidium/DNA complex, J. Phys. Chem. 87: 3286–3288.CrossRefGoogle Scholar
  96. 96.
    Genest, D., Wahl, R, Champagne, M. E. M., and Daune, M., 1982, Fluorescence anisotropy decay of ethidium bromide bound to nucleosomal core particles, Biochimie 64: 419–427.CrossRefGoogle Scholar
  97. 97.
    Schurr, J. M., Fujimoto, B. S., Wu, R, and Song, L., 1992, Fluorescence studies of nucleic acids: Dynamics, rigidities, and structures, in Topics in Fluorescence Spectroscopy, Volume 3, Biochemical Applications, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 137–229.Google Scholar
  98. 98.
    Thomas, J. C., Allison, S. A., Appellof, C. J., and Schurr, J. M., 1980, Torsion dynamics and depolarization of fluorescence of linear macromolecules. Il. Fluorescence polarization anisotropy measurements on a clean viral 29 DNA, Biophys. Chem. 12: 177–188.CrossRefGoogle Scholar
  99. 99.
    Barkley, M. D., and Zimm, B. H., 1979, Theory of twisting and bending of chain macromolecules; analysis of the fluorescence depolarization of DNA, J. Chem. Phys. 70: 2991–3007.CrossRefGoogle Scholar
  100. 100.
    Duhamel, J., Kanyo, J., Dinter-Gottlieb, G., and Lu, P., 1996, Fluorescence emission of ethidium bromide intercalated in defined DNA duplexes: Evaluation of hydrodynamics components, Biochemistry 35: 16687–16697.CrossRefGoogle Scholar
  101. 101.
    Collini, M., Chirico, G., Baldini, G., and Bianchi, M. E, 1995, Conformation of short DNA fragments by modulated fluorescence polarization anisotropy, Biopolymers 36: 211–225.CrossRefGoogle Scholar
  102. 102.
    Wu, P., Li, H., Nordlund, T. M., and Rigler, R., 1990, Multistate modeling of the time and temperature dependence of fluorescence from 2-aminopurine in a DNA decamer, Proc. SPIE 1204: 262–269.CrossRefGoogle Scholar
  103. 103.
    Guest, C. R., Hochstrasser, R. A., Sowers, L. C., and Millar, D. R, 1991, Dynamics of mismatched base pairs in DNA, Biochemistry 30: 3271–3279.CrossRefGoogle Scholar
  104. 104.
    Collin, M., Chirico, G., and Baldini, G., 1995, Influence of ligands on the fluorescence polarization anisotropy of ethidium bound to DNA, Biophys. Chem. 53: 227–239.CrossRefGoogle Scholar
  105. 105.
    Barcellona, M. L., and Gratton, E., 1996, Fluorescence anisotropy of DNA/DAPI complex: Torsional dynamics and geometry of the complex, Biophys. J. 70: 2341–2351.CrossRefGoogle Scholar
  106. 106.
    Fujimoto, B. S., Miller, J. M., Ribeiro, S., and Schurr, J. M., 1994, Effects of different cations on the hydrodynamic radius of DNA, Biophys. J. 67: 304–308.CrossRefGoogle Scholar
  107. 107.
    Georghiou, S., Bradrick, T. D., Philippetis, A., and Beechem, J. M., 1996, Large-amplitude picosecond anisotropy decay of the intrinsic fluorescence of double-stranded DNA, Biophys. J. 70: 1909–1922.CrossRefGoogle Scholar
  108. 108.
    Mateo, C. R., Souto, A. A., Amat-Guerri, F., and Acuna, A. U., 1996, New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein—lipid interactions, Biophys. J. 71: 2177–2191.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations