Skip to main content

Abstract

In the preceding chapter we described the measurement and interpretation of steady-state fluorescence anisotropies. These values are measured using continuous illumination and represent an average of the anisotropy decay over the intensity decay. Measurement of steady-state anisotropies is simple, but interpretation of the steady-state anisotropies usually depends on an assumed form for the anisotropy decay, which is not directly observed in the experiment. Additional information is available if one measures the time-dependent anisotropy, that is, the values of r(t) following pulsed excitation. The form of the anisotropy decay depends on the size, shape, and flexibility of the labeled molecule, and the data can be compared with the decays calculated from various molecular models. Anisotropy decays can be obtained using the TD or the FD method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lakowicz, J. R., Cherek, H., Kusba, J., Gryczynski, I., and Johnson, M. L., 1993, Review of fluorescence anisotropy decay analysis by frequency-domain fluorescence spectroscopy, J. Fluoresc. 3 (2): 103–116.

    Article  CAS  Google Scholar 

  2. Lakowicz, J. R., and Gryczynski, I., 1991, Frequency-domain fluorescence spectroscopy, in Topics in Fluorescence Spectroscopy, Volume 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 293–355.

    Google Scholar 

  3. Spencer, R. D., and Weber, G., 1970, Influence of Brownian rotations and energy transfer upon the measurement of fluorescence lifetimes, J. Chem. Phys. 52: 1654–1663.

    Article  CAS  Google Scholar 

  4. Szymanowski, W., 1935, Einfluss der Rotation der Molekule auf die Messungen der Abklingzert des Fluoreszenzstrahlung, Z. Phys. 95: 466–473.

    Article  CAS  Google Scholar 

  5. Kudryashov, P. I., Sveshnikov, B. Y, and Shirokov, V. I., 1960, The kinetics of the concentration depolarization of luminescence and of the intermolecular transfer of excitation energy, Opt. Spectrosc. 9: 177–181.

    CAS  Google Scholar 

  6. Bauer, R. K., 1963, Polarization and decay of fluorescence of solutions, Z Naturforsch. A 18: 718–724.

    Google Scholar 

  7. Cross, A. J., and Fleming, G. R., 1984, Analysis of time-resolved fluorescence anisotropy decays, Biophys. J. 46: 45–56.

    Article  CAS  Google Scholar 

  8. Wahl, P. 1979, Analysis of fluorescence anisotropy decays by least square method, Biophys. Chem. 10: 91–104.

    Article  CAS  Google Scholar 

  9. Taylor, J. R., 1982, An Introduction to Error Analysis, University Science Books, Mill Valley, California, pp. 173–187.

    Google Scholar 

  10. Dale, R. E., Chen, L. A., and Brand, L., 1977, Rotational relaxation of the “microviscosity” probe diphenylhexatriene in paraffin oil and egg lecithin vesicles, J. Am. Chem. Soc. 252: 7500–7510.

    CAS  Google Scholar 

  11. Papenhuijzen, J., and Visser, A. J. W. G., 1983, Simulation of convoluted and exact emission anisotropy decay profiles, Biophys. Chem. 17: 57–65.

    Article  CAS  Google Scholar 

  12. Gilbert, C. W., 1983, A vector method for the non-linear least squares reconvolution-and-fitting analysis of polarized fluorescence decay data, in Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, R. B. Cundall, and R. E. Dale (eds.), Plenum Press, New York, pp. 605–606.

    Google Scholar 

  13. Beechem, J. M., and Brand, L., 1986, Global analysis of fluorescence decay: Applications to some unusual experimental and theoretical studies, Photochem. Photobiol. 44: 323–329.

    Article  CAS  Google Scholar 

  14. Crutzen, M., Ameloot, M., Boens, N., Negri, R. M., and De Schryver, E C., 1993, Global analysis of unmatched polarized fluorescence decay curves, J. Phys. Chem. 97: 8133–8145.

    Article  CAS  Google Scholar 

  15. Vos, K., van Hoek, A., and Visser, A. J. W. G., 1987, Application of a reference convolution method to tryptophan fluorescence in proteins, Eur. J. Biochem. 165: 55–63.

    Article  CAS  Google Scholar 

  16. Weber, G., 1971, Theory of fluorescence depolarization by anisotropic Brownian rotations. Discontinuous distribution approach, J. Chem. Phys. 55: 2399–2407.

    Article  CAS  Google Scholar 

  17. Merkelo, H., Hammond, J. H., Hartman, S. R., and Derzko, Z. I., 1970, Measurement of the temperature dependence of depolarization time of luminescence, J. Lumin. 2: 502–512.

    Article  Google Scholar 

  18. Lakowicz, J. R., Prendergast, F. G., and Hogen, D., 1979, Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers: Quantitation of hindered depolarizing rotations, Biochemistry 18: 508–519.

    Article  CAS  Google Scholar 

  19. Reinhart, G. D., Mazzola, P., Jameson, D. M., and Gratton, E., 1991, A method for on-line background subtraction in frequency domain fluorometry, J. Fluoresc. 1 (3): 153–162.

    Article  CAS  Google Scholar 

  20. Belford, G. G., Belford, R. L., and Weber, G., 1972, Dynamics of fluorescence polarization in macromolecules, Proc. Natl. Acad. Sci. U.S.A. 69: 1392–1393.

    Article  CAS  Google Scholar 

  21. Chuang, T. J., and Eisenthal, K. B., 1972, Theory of fluorescence depolarization by anisotropic rotational diffusion, J. Chem. Phys. 57: 5094–5097.

    Article  CAS  Google Scholar 

  22. Ehrenberg, M., and Rigler, R., 1972, Polarized fluorescence and rotational Brownian diffusion, Chem. Phys. Lett. 14: 539–544.

    Article  CAS  Google Scholar 

  23. Tao, T., 1969, Time-dependent fluorescence depolarization and Brownian rotational diffusion of macromolecules, Biopolymers 8: 609–632.

    Article  CAS  Google Scholar 

  24. Lombardi, J. R., and Dafforn, G. A., 1966, Anisotropic rotational relaxation in rigid media by polarized photoselection, J. Chem. Phys. 44: 3882–3887.

    Article  Google Scholar 

  25. Small, E. W., and Isenberg, I., 1977, Hydrodynamic properties of a rigid molecule: Rotational and linear diffusion and fluorescence anisotropy, Biopolymers 16: 1907–1928.

    Article  CAS  Google Scholar 

  26. Steiner, R. F., 1991, Fluorescence anisotropy: Theory and applications, in Topics in Fluorescence Spectroscopy, Volume 2, Principles, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1–52.

    Google Scholar 

  27. Veatch, W. R., and Stryer, L., 1977, Effect of cholesterol on the rotational mobility of diphenylhexatriene in liposomes: A nanosecond fluorescence anisotropy study, J. Mol. Biol. 117: 1109–1113.

    Article  CAS  Google Scholar 

  28. Chen, L. A., Dale, R. E., Roth, S., and Brand, L., 1977, Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of “microviscosity,” J. Biol. Chem. 252: 2163–2169.

    CAS  Google Scholar 

  29. Kawato, S., Kinosita, K., and Ikegami, A., 1978, Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayers studied by nanosecond fluorescence techniques, Biochemistry 17: 5026–5031.

    Article  CAS  Google Scholar 

  30. Hildenbrand, K., and Nicolau, C., 1979, Nanosecond fluorescence anisotropy decays of 1,6-diphenyl-1,3,5-hexatriene in membranes, Biochim. Biophys. Acta 553: 365–377.

    Article  CAS  Google Scholar 

  31. Kinosita, K., Kawato, S., and Ikegami, A., 1977, A theory of fluorescence polarization decay in membranes, Biophys. J. 20: 289–305.

    Article  CAS  Google Scholar 

  32. Kinosita, K., Ikegami, A., and Kawato, S., 1982, On the wobbling- 49. in-cone analysis of fluorescence anisotropy decay, Biophys. J. 37: 461–464.

    Article  CAS  Google Scholar 

  33. Komura, S., Ohta, Y., and Kawato, S., 1990, A theory of optical anisotropy decay in membranes, J. Phys. Soc. Jpn. 59: 2584–2595.

    Article  CAS  Google Scholar 

  34. Wallach, D., 1967, Effects of intemal rotation on angular correlation functions, J. Chem. Phys. 47: 5258–5268.

    Article  CAS  Google Scholar 

  35. Gottlieb, Y. Ya., and Wahl, P., 1963, Etude théorique de la polarisation de fluorescence des macromolecules portant un groupe émetteur mobile autour d’un axe de rotation, J. Chio. Phys. 60: 849–856.

    Google Scholar 

  36. Lapari, G., and Szabo, A., 1980, Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes, Biophys. J. 30: 489–506.

    Article  Google Scholar 

  37. Vincent, M., and Gallay, J., 1991, The interactions of horse heart apocytochrome c with phospholipid vesicles and surfactant micelles: Time-resolved fluorescence study of the single tryptophan residue (Trp-59), Eur. Biophys. J. 20: 183–191.

    Article  CAS  Google Scholar 

  38. Pap, E. H. W., Ter Horst, J. J., Van Hoek, A., and Visser, A. J. W. G., 1994, fluorescence dynamics of diphenyl-1,3,5-hexatriene-labeled phospholipids in bilayer membranes, Biophys. Chem. 48: 337–351.

    Google Scholar 

  39. Gryczynski, I., Johnson, M. L., and Lakowicz, J. R., 1994, Analysis of anisotropy decays in terms of correlation time distributions, measured by frequency-domain fluorometry, Biophys. Chem. 52: 113.

    Article  Google Scholar 

  40. Peng, K., Visser, A. J. W. G., van Hoek, A., Wolfs, C. J. A. M., Sanders, J. C., and Hemminga, M. A., 1990, Analysis of time-resolved fluorescence anisotropy in lipid—protein systems. I. Application to the lipid probe octadecyl rhodamine B in interaction with bacteriophage M13 coat protein incorporated in phospholipid bilayers, Eur. Biophys. J. 18: 277–283.

    Article  CAS  Google Scholar 

  41. Visser, A. J. W. G., Van Hoek, A., and Van Paridon, P. A., 1987, Time-resolved fluorescence depolarization studies of parinaroyl phosphatidylcholine in Triton X-100 micelles and rat skeletal muscle membranes, in Membrane Receptors, Dynamics, and Energetics, K. W. A. Wirtz (ed.), Plenum Press, New York, pp. 353–361.

    Google Scholar 

  42. Brand, L., Knutson, J. R., Davenport, L., Beechem, J. M., Dale, R. E., Walbridge, D. G., and Kowalczyk, A. A., 1985, Time-resolved fluorescence spectroscopy: Some applications of associative behaviour to studies of proteins and membranes, in Spectroscopy and the Dynamics of Molecular Biological Systems, P. Bayley and R. E. Dale (Eds.), Academic Press, London, pp. 259–305.

    Google Scholar 

  43. Ruggiero, A., and Hudson, B., 1989, Analysis of the anisotropy decay of trans-parinaric acid in lipid bilayers, Biophys. J. 55: 1125–1135.

    Article  CAS  Google Scholar 

  44. Shinitzky, M., and Barenholz, Y., 1978, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta 515: 367–394.

    Article  CAS  Google Scholar 

  45. Kawato, S., Kinosita, K., and Ikegami, A., 1977, Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques, Biochemistry 16: 2319–2324.

    Article  CAS  Google Scholar 

  46. Stubbs, C. D., and Williams, B. W., 1992, Fluorescence in membranes, in Topics in Fluorescence Spectroscopy, Volume 3, Biochemical Applications, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 231–271.

    Google Scholar 

  47. Stubbs, C. D., Kouyama, T., Kinosita, K., and Ikegami, A., 1981, Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers, Biochemistry 20: 4257–4262.

    Article  CAS  Google Scholar 

  48. Ameloot, M., Hendrickx, H., Herreman, W., Pottel, H., Van Cauwelaert, E, and van der Meer, W., 1984, Effect of orientational order 66. on the decay of fluorescence anisotropy in membrane suspensions, Biophys. J. 46: 525–539.

    Article  CAS  Google Scholar 

  49. Vincent, M., de Foresta, B., Gallay, J., and Alfsen, A., 1982, Nanosecond fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles with regard to isotropic solvents, Biochemistry 21: 708–716.

    Article  CAS  Google Scholar 

  50. Pal, R., Petri, W. A., Ben-Yashar, V., Wagner, R. R., and Barenholz, Y., 1985, Characterization of the fluorophore 4-heptadecyl-7-hydroxycoumarin: A probe for the head-group region of lipid bilayers and biological membranes, Biochemistry 24: 573–581.

    Article  CAS  Google Scholar 

  51. Wolber, P. K., and Hudson, B. S., 1981, Fluorescence lifetime and time-resolved polarization anisotropy studies of acyl chain order and dynamics in lipid bilayers, Biochemistry 20: 2800–2810.

    Article  CAS  Google Scholar 

  52. Davenport, L., and Targowski, P., 1996, Submicrosecond phospholipid dynamics using a long-lived fluorescence emission anisotropy probe, Biophys. J. 71: 1837–1852.

    Article  CAS  Google Scholar 

  53. Kinosita, K., Kawato, S., and Ikegami, A., 1984, Dynamic structure of biological and model membranes: Analysis by optical anisotropy decay measurements, Adv. Biophys. 17: 147–203.

    Article  Google Scholar 

  54. Jähnig, F., 1979, Structural order of lipids and proteins in membranes: Evaluation of fluorescence anisotropy data, Proc. Natl. Acad. Sci. U.S.A. 76: 6361–6365.

    Article  Google Scholar 

  55. Heyn, M. E, 1979, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments, FEBS Lett. 108: 359–364.

    Article  CAS  Google Scholar 

  56. Van Blitterswijk, W. J., Van Hoeven, R. P., and Van Der Meer, B. W., 1981, Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements, Biochim. Biophys. Acta 644: 323–332.

    Article  Google Scholar 

  57. Best, L., John, E., and Jähnig, E, 1987, Order and fluidity of lipid membranes as determined by fluorescence anisotropy decay, Eue Biophys. J. 15: 87–102.

    CAS  Google Scholar 

  58. Lakowicz, J. R., Cherek, H., Maliwal, B. E, and Gratton, E., 1985, Time-resolved fluorescence anisotropies of diphenylhexatriene and perylene in solvents and lipid bilayers obtained from multifrequency phase-modulation fluorometry, Biochemistry 24: 376–383.

    Article  CAS  Google Scholar 

  59. Faucon, J. F., and Lakowicz, J. R., 1987, Anisotropy decay of diphenylhexatriene in melittin—phospholipid complexes by multi-frequency phase-modulation fluorometry, Arch. Biochem. Biophys. 252: 245–258.

    Article  CAS  Google Scholar 

  60. Lakowicz, J. R., 1985, Frequency-domain fluorometry for resolution of time-dependent fluorescence emission, Spectroscopy 1: 28–37.

    Google Scholar 

  61. Ross, J. A., Schmidt, C. J., and Brand, L., 1981, Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase, Biochemistry 20: 4369–4377.

    Article  CAS  Google Scholar 

  62. Vincent, M., Deveer, A.-M., De Haas, G. H., Verheij, H. M., and Gallay, J., 1993, Stereospecificity of the interaction of porcine pancreatic phospholipase A2 with micellar and monomeric inhibitors, Eue. J. Biochem. 215: 531–539.

    Article  CAS  Google Scholar 

  63. Bouhss, A., Vincent, M., Munier, H., Gilles, A.-M., Takahashi, M., Barzu, O., Danchin, A., and Gallay, J., 1996, Conformational transitions within the calmodulin-binding site of Bordetella pertussis adenylate cyclase studied by time-resolved fluorescence of Trp242 and circular dichroism, Eue J. Biochem. 237: 619–628.

    Article  CAS  Google Scholar 

  64. Kulinski, T., and Visser, A. J. W. G., 1987, Spectroscopic investigations of the single tryptophan residue and of riboflavin and 7-oxalumazine bound to lumazine apoprotein from Photobacterium leiognathi, Biochemistry 26: 540–549.

    Article  CAS  Google Scholar 

  65. Rischel, C., Thyberg, P., Rigler, R., and Poulsen, F. M., 1996, Time-resolved fluorescence studies of the molten globule state of apomyoglobin, J. Mol. Biol. 257: 877–885.

    Article  CAS  Google Scholar 

  66. Axelsen, P. H., Gratton, E., and Prendergast, E. G., 1991, Experimentally verifying molecular dynamics simulations through fluorescence anisotropy measurements, Biochemistry 30: 1173–1179.

    Article  CAS  Google Scholar 

  67. Fa, M., Karolin, J., Aleshkov, S., Strandberg, L., Johansson, L. B.-A., and Ny, T., 1995, Time-resolved polarized fluorescence spectroscopy studies of plasminogen activator inhibitor type I: Conformational changes of the reactive center upon interactions with target proteases, vitronectin and heparin, Biochemistry 34: 13833–13840.

    Article  CAS  Google Scholar 

  68. Broos, J., Visser, A. J. W. G., Engbersen, F. J., Verboom, W., van Hoek, A., and Reinhoudt, D. N., 1995, Flexibility of enzymes suspended in organic solvents probed by time-resolved fluorescence anisotropy. Evidence that enzyme activity and enantioselectivity are directly related to enzyme flexibility, J. Am. Chem. Soc. 117: 12657–12663.

    Article  CAS  Google Scholar 

  69. Yguerabide, J., Epstein, H. F., and Stryer, L., 1970, Segmental flexibility in an antibody molecule, J. Mol. Biol. 51: 573–590.

    Article  CAS  Google Scholar 

  70. Hanson, D. C., Yguerabide, J., and Schumaker, V. N., 1981, Segmental flexibility of immunoglobulin G antibody molecules in solution: A new interpretation, Biochemistry 20: 6842–6852.

    Article  CAS  Google Scholar 

  71. Wahl, P., 1969, Mesure de la décroissance de la fluorescence polarisée de la y-globuline-1-sulfonyl-5-diméthylaminonaphtalène, Biochim. Biophys. Acta 175: 55–64.

    Article  CAS  Google Scholar 

  72. Wahl, P., Kasai, M., and Changuex, J.-R, 1971, A study of the motion of proteins in excitable membrane fragments by nanosecond fluorescence polarization spectroscopy, Eur. J. Biochem. 18: 332–341.

    Article  CAS  Google Scholar 

  73. Brochon, J.-C., and Wahl, P., 1972, Mesures des déclins de l’anisotropie de fluorescence de la y-globuline et de ses fragments Fab, Fc et F(ab)2 marqués avec le 1-sulfonyl-5-diméthyl-aminonaphtalène, Eur. J. Biochem. 25: 20–32.

    Article  CAS  Google Scholar 

  74. Holowka, D., Wensel, T., and Baird, B., 1990, A nanosecond fluorescence depolarization study on the segmental flexibility of receptor-bound immunoglobulin E, Biochemistry 29: 4607–4612.

    Article  CAS  Google Scholar 

  75. Visser, A. J. G., van Hoek, A., Visser, N. V., Lee, Y., and Ghisia, S., 1997, Time-resolved fluorescence study of the dissociation of FMN from the yellow fluorescence protein from Vibrio fischeri, Photochem. Photobiol. 65: 570–575.

    Article  CAS  Google Scholar 

  76. Lakowicz, J. R., Laczko, G., Gryczynski, I., and Cherek, H., 1986, Measurement of subnanosecond anisotropy decays of protein fluorescence using frequency-domain fluorometry, J. Biol. Chem. 261: 2240–2245.

    CAS  Google Scholar 

  77. Maliwal, B. P., and Lakowicz, J. R., 1986, Resolution of complex anisotropy decays by variable frequency phase-modulation fluorometry: A simulation study, Biochim. Biophys. Acta 873: 161–172.

    Article  CAS  Google Scholar 

  78. Maliwal, B. P., Hermetter, A., and Lakowicz, J. R., 1986, A study of protein dynamics from anisotropy decays obtained by variable frequency phase-modulation fluorometry: Internal motions of Nmethylanthraniloyl melittin, Biochim. Biophys. Acta 873: 173–181.

    Article  CAS  Google Scholar 

  79. Lakowicz, J. R., Laczko, G., and Gryczynski, I., 1987, Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry, Biochemistry 26: 82–90.

    Article  CAS  Google Scholar 

  80. Lakowicz, J. R., Laczko, G., and Gryczynski, I., 1986, Picosecond resolution of oxytocin tyrosyl fluorescence by 2 GHz frequency-domain fluorometry, Biophys. Chem 24: 97–100.

    Article  CAS  Google Scholar 

  81. Lakowicz, J. R., Gratton, E., Cherek, H., Maliwal, B. P., and Laczko, G., 1984, Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore—protein complex using frequency-domain phase-modulation fluorometry, J. Biol. Chem. 259: 10967–10972.

    CAS  Google Scholar 

  82. Matayoshi, E. D., Sawyer, W. H., and Jovin, T. M., 1991, Rotational diffusion of band 3 in erythrocyte membranes. 2. Binding of cytoplasmic enzymes, Biochemistry 30: 3538–3543.

    Article  CAS  Google Scholar 

  83. Pecht, I., Ortega, E., and Jovin, T. M., 1991, Rotational dynamics of the Fc receptor on mast cells monitored by specific monoclonal antibodies and IgE, Biochemistry 30: 3450–3458.

    Article  CAS  Google Scholar 

  84. Shi, Y., Karon, B. S., Kutchai, H., and Thomas, D. D., 1996, Phospholamban-dependent effects of C12E8 on calcium transport and molecular dynamics in cardiac sarcoplasmic reticulum, Biochemistry 35: 13393–13399.

    Article  CAS  Google Scholar 

  85. Karon, B. S., Geddis, L. M., Kutchai, H., and Thomas, D. D., 1995, Anesthetics alter the physical and functional properties of the Ca-ATPase in cardiac sarcoplasmic reticulum, Biophys. J. 68: 936945.

    Google Scholar 

  86. Voss, J. C., Mahaney, J. E., and Thomas, D. D., 1995, Mechanism of Ca-ATPase inhibition by melittin in skeletal sarcoplasmic reticulum, Biochemistry 34: 930–939.

    Article  CAS  Google Scholar 

  87. Terpetschnig, E., Szmacinski, H., and Lakowicz, J. R., 1997, Long-lifetime metal—ligand complexes as probes in biophysics and clinical chemistry, Methods Enzymol. 278: 295–321.

    Article  CAS  Google Scholar 

  88. Li, L., Szmacinski, H., and Lakowicz, J. R., 1997, Synthesis and luminescence spectral characterization of long-lifetime lipid metal—ligand probes, Anal. Biochem. 244: 80–85.

    Article  CAS  Google Scholar 

  89. Guo, X.-Q., Castellano, F. N., Li, L., Szmacinski, H., Lakowicz, J. R., and Sipior, J., 1997, A long-lived, highly luminescent Re(I) metal—ligand complex as a biomolecular probe, Anal. Biochem. 254: 179–186.

    Article  CAS  Google Scholar 

  90. DeGraff, B. A., and Demas, J. N., 1994, Direct measurement of rotational correlation times of luminescent ruthenium (II) molecular probes by differential polarized phase fluorometry, J. Phys. Chem. 98: 12478–12480.

    Article  CAS  Google Scholar 

  91. Wahl, P., Paoletti, J., and Le Pecq, J.-B., 1970, Decay of fluorescence emission anisotropy of the ethidium bromide—DNA complex evidence for an internal motion in DNA, Proc. Natl. Acad. Sci. U.S.A. 65: 417–421.

    Article  CAS  Google Scholar 

  92. Millar, D. P., Robbins, R. J., and Zewail, A. H., 1981, Time-resolved spectroscopy of macromolecules: Effect of helical structure on the torsional dynamics of DNA and RNA, J. Chem. Phys. 74: 4200–4201.

    Article  CAS  Google Scholar 

  93. Ashikawa, I., Kinosita, K., Ikegami, A., Nishimura, Y., Tsuboi, M., Watanabe, K., Iso, K., and Nakano, T., 1983, Internal motion of deoxyribonucleic acid in chromatin. Nanosecond fluorescence studies of intercalated ethidium, Biochemistry 22: 6018–6026.

    Article  CAS  Google Scholar 

  94. Wang, J., Hogan, M., and Austin, R. H., 1982, DNA motions in the nucleosome core particle, Proc. Natl. Acad. Sci. U.S.A. 79: 5896–5900.

    Article  CAS  Google Scholar 

  95. Magde, D., Zappala, M., Knox, W. H., and Nordlund, T. M., 1983, Picosecond fluorescence anisotropy decay in the ethidium/DNA complex, J. Phys. Chem. 87: 3286–3288.

    Article  CAS  Google Scholar 

  96. Genest, D., Wahl, R, Champagne, M. E. M., and Daune, M., 1982, Fluorescence anisotropy decay of ethidium bromide bound to nucleosomal core particles, Biochimie 64: 419–427.

    Article  CAS  Google Scholar 

  97. Schurr, J. M., Fujimoto, B. S., Wu, R, and Song, L., 1992, Fluorescence studies of nucleic acids: Dynamics, rigidities, and structures, in Topics in Fluorescence Spectroscopy, Volume 3, Biochemical Applications, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 137–229.

    Google Scholar 

  98. Thomas, J. C., Allison, S. A., Appellof, C. J., and Schurr, J. M., 1980, Torsion dynamics and depolarization of fluorescence of linear macromolecules. Il. Fluorescence polarization anisotropy measurements on a clean viral 29 DNA, Biophys. Chem. 12: 177–188.

    Article  CAS  Google Scholar 

  99. Barkley, M. D., and Zimm, B. H., 1979, Theory of twisting and bending of chain macromolecules; analysis of the fluorescence depolarization of DNA, J. Chem. Phys. 70: 2991–3007.

    Article  CAS  Google Scholar 

  100. Duhamel, J., Kanyo, J., Dinter-Gottlieb, G., and Lu, P., 1996, Fluorescence emission of ethidium bromide intercalated in defined DNA duplexes: Evaluation of hydrodynamics components, Biochemistry 35: 16687–16697.

    Article  CAS  Google Scholar 

  101. Collini, M., Chirico, G., Baldini, G., and Bianchi, M. E, 1995, Conformation of short DNA fragments by modulated fluorescence polarization anisotropy, Biopolymers 36: 211–225.

    Article  CAS  Google Scholar 

  102. Wu, P., Li, H., Nordlund, T. M., and Rigler, R., 1990, Multistate modeling of the time and temperature dependence of fluorescence from 2-aminopurine in a DNA decamer, Proc. SPIE 1204: 262–269.

    Article  CAS  Google Scholar 

  103. Guest, C. R., Hochstrasser, R. A., Sowers, L. C., and Millar, D. R, 1991, Dynamics of mismatched base pairs in DNA, Biochemistry 30: 3271–3279.

    Article  CAS  Google Scholar 

  104. Collin, M., Chirico, G., and Baldini, G., 1995, Influence of ligands on the fluorescence polarization anisotropy of ethidium bound to DNA, Biophys. Chem. 53: 227–239.

    Article  Google Scholar 

  105. Barcellona, M. L., and Gratton, E., 1996, Fluorescence anisotropy of DNA/DAPI complex: Torsional dynamics and geometry of the complex, Biophys. J. 70: 2341–2351.

    Article  CAS  Google Scholar 

  106. Fujimoto, B. S., Miller, J. M., Ribeiro, S., and Schurr, J. M., 1994, Effects of different cations on the hydrodynamic radius of DNA, Biophys. J. 67: 304–308.

    Article  CAS  Google Scholar 

  107. Georghiou, S., Bradrick, T. D., Philippetis, A., and Beechem, J. M., 1996, Large-amplitude picosecond anisotropy decay of the intrinsic fluorescence of double-stranded DNA, Biophys. J. 70: 1909–1922.

    Article  CAS  Google Scholar 

  108. Mateo, C. R., Souto, A. A., Amat-Guerri, F., and Acuna, A. U., 1996, New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein—lipid interactions, Biophys. J. 71: 2177–2191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). Time-Dependent Anisotropy Decays. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics