Skip to main content

Introduction to Fluorescence

  • Chapter

Abstract

During the past 15 years there has been a remarkable growth in the use of fluorescence in the biological sciences. Just a few years ago, fluorescence spectroscopy and timeresolved fluorescence were primarily research tools in biochemistry and biophysics. This situation has changed so that fluorescence is now used in environmental monitoring, clinical chemistry, DNA sequencing, and genetic analysis by fluorescence in situ hybridization (FISH), to name a few areas of application. Additionally, fluorescence is used for cell identification and sorting in flow cytometry, and in cellular imaging to reveal the localization and movement of intracellular substances by means of fluorescence microscopy. Because of the sensitivity of fluorescence detection, and the expense and difficulties of handling radioactive substances, there is a continuing development of medical tests based on the phenomenon of fluorescence. These tests include the widely used enzymelinked immunoassays (ELISA) and fluorescence polarization immunoassays.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herschel, Sir J. F. W., 1845, On a case of superficial colour presented by a homogeneous liquid internally colourless, Phil. Trans. R. Soc. London 135: 143–145.

    Article  Google Scholar 

  2. Gillispie, C. C. (ed.), 1972, “John Frederick William Herschel,” in Dictionary of Scientific Biography, Vol. 6, Charles Scribner’s Sons, New York, pp. 323–328.

    Google Scholar 

  3. Undenfriend, S., 1995, Development of the spectrophotofluorometer and its commercialization, Protein Sci. 4: 542–551.

    Article  Google Scholar 

  4. Martin, B. R., and Richardson, F., 1979, Lanthanides as probes for calcium in biological systems, Q. Rev. Biophys. 12: 181–203.

    Article  CAS  Google Scholar 

  5. Berlman, I. B. 1971, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed., Academic Press, New York.

    Google Scholar 

  6. Jablonski, A., 1935, Über den Mechanisms des Photolumineszenz von Farbstoffphosphoren, Z Phys. 94: 38–46.

    Article  CAS  Google Scholar 

  7. Szudy, J. (ed.), 1998, Born 100 Years Ago: Aleksander Jablorfski (1898–1980), Uniwersytet Mikolaja Kopernika, Torun, Poland.

    Google Scholar 

  8. Polska Akademia Nauk Instytut Fizyki, 1978, Acta Physics Polonica, Europhys. J. A65 (6).

    Google Scholar 

  9. Stokes, G. G., 1852, On the change of refrangibility of light, Phil. Trans. R. Soc. London 142: 463–562.

    Article  Google Scholar 

  10. Kasha, M., 1950, Characterization of electronic transitions in complex molecules, Disc. Faraday Soc. 9: 14–19.

    Article  Google Scholar 

  11. Birks, J. B., 1970, Photophysics of Aromatic Molecules, John Wiley & Sons, New York.

    Google Scholar 

  12. Ref. 11, p. 108.

    Google Scholar 

  13. Lakowicz, J. R., and Batter, A., 1982, Analysis of excited state processes by phase-modulation fluorescence spectroscopy, Biophys. Chem. 16: 117–132.

    Article  CAS  Google Scholar 

  14. Gafni, A., and Brand, L., 1978, Excited state proton transfer reactions of acridine studied by nanosecond fluorometry, Chem. Phys. Leu. 58: 346–350.

    Article  CAS  Google Scholar 

  15. Birks, J. B., 1973, Organic Molecular Photophysics, John Wiley & Sons, New York, p. 14.

    Google Scholar 

  16. Strickler, S. J., and Berg, R. A., 1962, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys. 37: 814–822.

    Article  CAS  Google Scholar 

  17. Ref. 11, p. 120.

    Google Scholar 

  18. Föster, Th., 1948, Intermolecular energy migration and fluorescence, Ann. Phys. (Leipzig) 2:55–75. Translated by R. S. Knox.

    Google Scholar 

  19. Stryer, L., 1978, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem. 47: 819–846.

    Article  CAS  Google Scholar 

  20. Lakowicz, J. R., 1995, Fluorescence spectroscopy of biomolecules, in Encyclopedia of Molecular Biology and Molecular Medicine, R. A. Meyers (ed.), VCH Publishers, New York, pp. 294–306.

    Google Scholar 

  21. Secrist, J. A., Barrio, J. R., and Leonard, N. J., 1972, A fluorescent modification of adenosine triphosphate with activity in enzyme synthesis: 1,N6-ethenoadenosine triphosphate, Science 175: 646–647.

    Article  CAS  Google Scholar 

  22. Scopes, D. I. C., Barrio, J. R., and Leonard, N. J., 1977, Defined dimensional changes in enzyme cofactors: Fluorescent “stretched-out” analogues of adenine nucleotides, Science 195: 296–298.

    Article  CAS  Google Scholar 

  23. Grell, E., Lewitzki, E., Bremer, C., Kramer-Schmitt, S., Weber, J., and Senior, A. E., 1994, /in-Boons-ATP and -ADP: Versatile fluorescent probes for spectroscopic and biochemical studies, J. Fluoresc. 4(3):247–250.

    Google Scholar 

  24. Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C., Connell, C. R., Heiner, C., Kent, S. B. H., and Hood, L. E., 1986, Fluorescence detection in automated DNA sequence analysis, Nature 321: 674–679.

    Article  CAS  Google Scholar 

  25. Prober, J. M., Trainor, G. L., Dam, R. J., Hobbs, F. W., Robertson, C. W., Zagursky, R. J., Cocuzza, A. J., Jensen, M. A., and Baumeister, K., 1987, A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides, Science 238: 330–341.

    Article  Google Scholar 

  26. Thompson, R. B. (ed.), 1997, Advances in Fluorescence Sensing Technology III, Proceedings of SPIE, Vol. 2980, SPIE, Bellingham, Washington.

    Google Scholar 

  27. Lakowicz, J. R. (ed.), 1994, Topics in Fluorescence Spectmscopy, Volume 4, Probe Design and Chemical Sensing, Plenum Press, New York.

    Google Scholar 

  28. Kasha, M., 1960, Paths of molecular excitation, Radiat. Res. 2: 243–275.

    Google Scholar 

  29. Lakowicz, J. R., and Weber, G. W., 1973, Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules, Biochemistry 12: 4161–4170.

    Article  CAS  Google Scholar 

  30. Hagag, N., Birnbaum, E. R., and Darnall, D. W., 1983, Resonance energy transfer between cysteine-34, tryptophan-214, and tyrosine-411 of human serum albumin, Biochemistry 22: 2420–2427.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). Introduction to Fluorescence. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics