During the past 15 years there has been a remarkable growth in the use of fluorescence in the biological sciences. Just a few years ago, fluorescence spectroscopy and timeresolved fluorescence were primarily research tools in biochemistry and biophysics. This situation has changed so that fluorescence is now used in environmental monitoring, clinical chemistry, DNA sequencing, and genetic analysis by fluorescence in situ hybridization (FISH), to name a few areas of application. Additionally, fluorescence is used for cell identification and sorting in flow cytometry, and in cellular imaging to reveal the localization and movement of intracellular substances by means of fluorescence microscopy. Because of the sensitivity of fluorescence detection, and the expense and difficulties of handling radioactive substances, there is a continuing development of medical tests based on the phenomenon of fluorescence. These tests include the widely used enzymelinked immunoassays (ELISA) and fluorescence polarization immunoassays.


Excited State Emission Spectrum Quantum Yield Human Serum Albumin Fluorescence Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Herschel, Sir J. F. W., 1845, On a case of superficial colour presented by a homogeneous liquid internally colourless, Phil. Trans. R. Soc. London 135: 143–145.CrossRefGoogle Scholar
  2. 2.
    Gillispie, C. C. (ed.), 1972, “John Frederick William Herschel,” in Dictionary of Scientific Biography, Vol. 6, Charles Scribner’s Sons, New York, pp. 323–328.Google Scholar
  3. 3.
    Undenfriend, S., 1995, Development of the spectrophotofluorometer and its commercialization, Protein Sci. 4: 542–551.CrossRefGoogle Scholar
  4. 4.
    Martin, B. R., and Richardson, F., 1979, Lanthanides as probes for calcium in biological systems, Q. Rev. Biophys. 12: 181–203.CrossRefGoogle Scholar
  5. 5.
    Berlman, I. B. 1971, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed., Academic Press, New York.Google Scholar
  6. 6.
    Jablonski, A., 1935, Über den Mechanisms des Photolumineszenz von Farbstoffphosphoren, Z Phys. 94: 38–46.CrossRefGoogle Scholar
  7. 7.
    Szudy, J. (ed.), 1998, Born 100 Years Ago: Aleksander Jablorfski (1898–1980), Uniwersytet Mikolaja Kopernika, Torun, Poland.Google Scholar
  8. 8.
    Polska Akademia Nauk Instytut Fizyki, 1978, Acta Physics Polonica, Europhys. J. A65 (6).Google Scholar
  9. 9.
    Stokes, G. G., 1852, On the change of refrangibility of light, Phil. Trans. R. Soc. London 142: 463–562.CrossRefGoogle Scholar
  10. 10.
    Kasha, M., 1950, Characterization of electronic transitions in complex molecules, Disc. Faraday Soc. 9: 14–19.CrossRefGoogle Scholar
  11. 11.
    Birks, J. B., 1970, Photophysics of Aromatic Molecules, John Wiley & Sons, New York.Google Scholar
  12. 12.
    Ref. 11, p. 108.Google Scholar
  13. 13.
    Lakowicz, J. R., and Batter, A., 1982, Analysis of excited state processes by phase-modulation fluorescence spectroscopy, Biophys. Chem. 16: 117–132.CrossRefGoogle Scholar
  14. 14.
    Gafni, A., and Brand, L., 1978, Excited state proton transfer reactions of acridine studied by nanosecond fluorometry, Chem. Phys. Leu. 58: 346–350.CrossRefGoogle Scholar
  15. 15.
    Birks, J. B., 1973, Organic Molecular Photophysics, John Wiley & Sons, New York, p. 14.Google Scholar
  16. 16.
    Strickler, S. J., and Berg, R. A., 1962, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys. 37: 814–822.CrossRefGoogle Scholar
  17. 17.
    Ref. 11, p. 120.Google Scholar
  18. 18.
    Föster, Th., 1948, Intermolecular energy migration and fluorescence, Ann. Phys. (Leipzig) 2:55–75. Translated by R. S. Knox.Google Scholar
  19. 19.
    Stryer, L., 1978, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem. 47: 819–846.CrossRefGoogle Scholar
  20. 20.
    Lakowicz, J. R., 1995, Fluorescence spectroscopy of biomolecules, in Encyclopedia of Molecular Biology and Molecular Medicine, R. A. Meyers (ed.), VCH Publishers, New York, pp. 294–306.Google Scholar
  21. 21.
    Secrist, J. A., Barrio, J. R., and Leonard, N. J., 1972, A fluorescent modification of adenosine triphosphate with activity in enzyme synthesis: 1,N6-ethenoadenosine triphosphate, Science 175: 646–647.CrossRefGoogle Scholar
  22. 22.
    Scopes, D. I. C., Barrio, J. R., and Leonard, N. J., 1977, Defined dimensional changes in enzyme cofactors: Fluorescent “stretched-out” analogues of adenine nucleotides, Science 195: 296–298.CrossRefGoogle Scholar
  23. 23.
    Grell, E., Lewitzki, E., Bremer, C., Kramer-Schmitt, S., Weber, J., and Senior, A. E., 1994, /in-Boons-ATP and -ADP: Versatile fluorescent probes for spectroscopic and biochemical studies, J. Fluoresc. 4(3):247–250.Google Scholar
  24. 24.
    Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C., Connell, C. R., Heiner, C., Kent, S. B. H., and Hood, L. E., 1986, Fluorescence detection in automated DNA sequence analysis, Nature 321: 674–679.CrossRefGoogle Scholar
  25. Prober, J. M., Trainor, G. L., Dam, R. J., Hobbs, F. W., Robertson, C. W., Zagursky, R. J., Cocuzza, A. J., Jensen, M. A., and Baumeister, K., 1987, A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides, Science 238: 330–341.CrossRefGoogle Scholar
  26. 26.
    Thompson, R. B. (ed.), 1997, Advances in Fluorescence Sensing Technology III, Proceedings of SPIE, Vol. 2980, SPIE, Bellingham, Washington.Google Scholar
  27. 27.
    Lakowicz, J. R. (ed.), 1994, Topics in Fluorescence Spectmscopy, Volume 4, Probe Design and Chemical Sensing, Plenum Press, New York.Google Scholar
  28. 28.
    Kasha, M., 1960, Paths of molecular excitation, Radiat. Res. 2: 243–275.Google Scholar
  29. 29.
    Lakowicz, J. R., and Weber, G. W., 1973, Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules, Biochemistry 12: 4161–4170.CrossRefGoogle Scholar
  30. 30.
    Hagag, N., Birnbaum, E. R., and Darnall, D. W., 1983, Resonance energy transfer between cysteine-34, tryptophan-214, and tyrosine-411 of human serum albumin, Biochemistry 22: 2420–2427.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations