The Double Layer and Surface Functionalities at Carbon

  • B. E. Conway

Abstract

A substantial fraction of the whole body of electrochemical capacitor development has depended, and continues to do so, on an understanding of the properties of carbon, especially in its more dispersed and conducting forms, including materials having fibrous or foamlike morphologies. It has been known for many years that there are two or really three natural allotropic forms of carbon: diamond, graphite, and the fullerenes, as noted in an earlier chapter. The graphite modification is crystalline and a moderately conducting, anisotropic, electronic conductor. Diamond is a highly ordered and insulating material. In addition, amorphous forms of carbon are well known, and transitions between amorphous and graphitic structures are possible at elevated temperatures, but are possible for diamond only at extremes of conditions. In more recent years, other modifications of carbon have been prepared or become known, namely, the fullerenes (which may exist in interstellar space), glassy carbon, and exotic species such as C2, which was also detected in interstellar space. Carbon “blacks” such as Shawinigan black or acetylene blacks (soots) are well known and have relatively high specific surface areas in the range of 30’1000 m2 per gram. However, they are not usually suitable for fabrication of capacitor electrodes.

Keywords

Electron Spin Resonance Double Layer Carbon Material Basal Plane Electron Spin Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Randin and E. Yeager, J. Electroanal Chem., 36, 257 (1972).CrossRefGoogle Scholar
  2. 2.
    J. P. Randin and E. Yeager, J. Electroanal. Chem., 58, 313 (1975).CrossRefGoogle Scholar
  3. 3.
    K. Kinoshita, Carbon, Wiley, New York (1988).Google Scholar
  4. 4.
    H. E. Becker, U.S. Patent to General Electric Co., No. 2,800,616 (1957).Google Scholar
  5. 5.
    J. C. Currie, in Chemistry and Physics of Composite Media, M. Tomkiewicz and P.N. Sen, eds., vol. 85’8, p. 174, Electrochemical Society, Pennington, N.J. See also J. C. Currie, U.S. Patent to Sohio, No. 4,730,239 (1988).Google Scholar
  6. 6.
    E. B. Yeager, J. A. Molla, and S. Gupta, in Proc. Electrochemical Society Symposium on the Electrochemistry of Carbon, vol. 84’5, p. 123, S. Sarangapani, J. R. Akridge, and B. Schumm, eds., The Electrochemical Society, Pennington, N.J. (1984).Google Scholar
  7. 7.
    R. F. Strickland-Constable, Trans. Faraday Soc, 34, 1074 (1938).CrossRefGoogle Scholar
  8. 8.
    H. A. Kozlowska, in Comprehensive Treatise of Electrochemistry, J. O’M. Bockris, B.E. Conway, and E. Yeager, eds., vol. 9, Chapter 2, Plenum, New York (1981).Google Scholar
  9. 9.
    M. L. Studebaker and C.W. Snow, J. Phys. Chem., 59, 973 (1955).CrossRefGoogle Scholar
  10. 10.
    K. Kinoshita and J. A. S. Bett, Carbon, 13, 403 (1975).Google Scholar
  11. 11.
    T. Murata and Y. Matsuda, Electrochim. Acta, 27, 795 (1982).CrossRefGoogle Scholar
  12. 12.
    K. F. Blurton, Electrochim. Acta, 18, 869 (1973).CrossRefGoogle Scholar
  13. 13.
    C. Kozlowska and P. M. A. Sherwood, J. Chem. Soc, Faraday Trans., I, 80, 2099 (1984).CrossRefGoogle Scholar
  14. 14.
    A. Proctor and P. M. A. Sherwood, Carbon, 21, 53 (1983).CrossRefGoogle Scholar
  15. 15.
    S. Mrozowski and J. F. Andrews, in Proc. IVth Conference on Carbon, p. 207, Pergamon, New York (1960).Google Scholar
  16. 16.
    L. S. Singer and C. Wagner, in Proc. Vth Conference on Carbon, vol. 2, p. 65, Pergamon, New York (1963).Google Scholar
  17. 17.
    E. G. Gagnon, J. Electrochem. Soc, 122, 521 (1975).CrossRefGoogle Scholar
  18. 18.
    Y. Oren, H. Tobias, and A. Soffer, J. Electroanal. Chem., 162, 87 (1985).CrossRefGoogle Scholar
  19. 19.
    B. Kastening, W. Schiel, and M. Henschel, J. Electroanal. Chem., 191, 311 (1985).CrossRefGoogle Scholar
  20. 20.
    D. C. Grahame, Chem. Rev., 41, 441 (1947).CrossRefGoogle Scholar
  21. 21.
    A. Hamelin, in Modern Aspects of Electrochemistry, vol. 16, Chapter 1, B. E. Conway, J. O’M. Bockris, and R. White, eds., Plenum, New York (1981).Google Scholar
  22. 22.
    A. Soffer and M. Folman, J. Electroanal. Chem., 38, 25 (1972).CrossRefGoogle Scholar
  23. 23.
    A. Soffer, J. Electroanal. Chem., 40, 153 (1973).CrossRefGoogle Scholar
  24. 24.
    J. Koresh and A. Soffer, J. Electrochem. Soc., 124, 1379 (1977).CrossRefGoogle Scholar
  25. 25.
    J. Oren and A. Soffer, J. Electrochem. Soc., 125, 869 (1978).CrossRefGoogle Scholar
  26. 26.
    J. Koresh and A. Soffer, J. Electrochem. Chem., 147, 223 (1983).CrossRefGoogle Scholar
  27. 27.
    H. Tobias and A. Soffer, J. Electroanal. Chem., 148, 221 (1983).CrossRefGoogle Scholar
  28. 28.
    Y. Oren, H. Tobias, and A. Soffer, J. Electroanal. Chem., 162, 87 (1984).CrossRefGoogle Scholar
  29. 29.
    Y. Oren and A. Soffer, J. Electroanal. Chem., 186, 63 (1985).CrossRefGoogle Scholar
  30. 30.
    Y. Oren and A. Soffer, J. Electroanal. Chem., 206, 101 (1986).CrossRefGoogle Scholar
  31. 31.
    D. Golub, A. Soffer, and Y. Oren, J. Electroanal. Chem., 227, 41 (1987).CrossRefGoogle Scholar
  32. 32.
    V. Sihvonen, Trans. Faraday Soc, 34, 1062 (1938).CrossRefGoogle Scholar
  33. 33.
    L. Antropov, Theoretical Electrochemistry, Chapter 10.3, p. 277, MIR Publ., Moscow (1972).Google Scholar
  34. 34.
    L. Meyer, Trans. Faraday Soc, 34, 1056 (1938).CrossRefGoogle Scholar
  35. 35.
    R. Schilow, Zeit. Phys. Chem., 149, 211 (1930).Google Scholar
  36. 36.
    J. D. Lambert, Trans. Faraday Soc, 34, 1080 (1938).CrossRefGoogle Scholar
  37. 37.
    The Electrochemistry of Carbon, Electrochemical Society Symposium, vol. 84’5, S. Sarangapani, J. K. Akridge, and B. Schumm, eds., The Electrochemical Society, Pennington, N.J. (1984).Google Scholar
  38. 38.
    X. Chu and K. Kinoshita, in Electrochemical Capacitors, Electrochemical Society Proceedings, vol. 95’29, F. Delnick and M. Tomkiewicz, eds., 171 (1995).Google Scholar
  39. 39.
    M. G. Sullivan, M. Bartech, R. Kotz, and O. Hass, in Electrochemical Society Proceedings, vol. 96’25, p. 192 (19%), The Electrochemical Society, Pennington, N.J. (1996).Google Scholar
  40. 40.
    L. S. Singer, in Proc. Electrochem. Soc. Symposium on Electrochemistry of Carbon, S. Sarangapani, J. R. Akridge, and B. Schumm, eds., p. 26, The Electrochemical Society, Pennington N.J. (1984).Google Scholar
  41. 4L.
    D. J. Ingram and J. E. Bennett, Phil. Mag., 45, 545 (1954).Google Scholar
  42. 42.
    J. Ueberfield, A. Etienne, and J. Combrisson, Nature, 174, 614 (1954).CrossRefGoogle Scholar
  43. 43.
    F. H. Winslow, W. O. Baker, and W. A. Yager, J. Am. Chem. Soc, 77, 4751 (1955).CrossRefGoogle Scholar
  44. 44.
    J. G. Castle, Phys. Rev., 92, 1063 (1953).CrossRefGoogle Scholar
  45. 45.
    R. L. Collins, M. D. Bell, and G. Kraus, J. Appl. Phys., 10, 56 (1959).CrossRefGoogle Scholar
  46. 46.
    J. R. Harbour and M. J. Walzak, Extended abstracts, 16th Biennial Conference on Carbon, 1983, p. 622 (published later in Carbon). Google Scholar
  47. 47.
    P. A. Thrower, J. Electroanal. Chem., 36, 401 (1972).Google Scholar
  48. 48.
    A. N. Frumkin and R. Burshtein, Zeit. Phys. Chem. (Leipzig), A141, 219 (1929).Google Scholar
  49. 49.
    T. C. Golden, R. G. Jenkins, Y. Otake, and A. W. Scaroni, in Proc. Electrochemical Society Symposium on The Electrochemistry of Carbon, S. Sarangapani, J. R. Akridge, and B. Schumm, eds., vol. 84’5, p. 61, The Electrochemical Society, Pennington, N.J. (1984).Google Scholar
  50. 50.
    V. A. Garten and D. E. Weiss, Rev. Pure Applied Chem., 7, 69 (1957);Google Scholar
  51. 50.
    V. A. Garten and D. E. Weiss, Austral, J. Chem., 8, 68 (1955).CrossRefGoogle Scholar
  52. 51.
    N. K. Adam, The Physics and Chemistry of Surfaces, 3rd edn., Oxford University Press, Lond., (1941).Google Scholar
  53. 52.
    T. J. Fabish and D. E. Schliefer, Carbon, 22,19 (1984).CrossRefGoogle Scholar
  54. 53.
    F. Beck and H. Krohn, in Proc. Electrochemical Society Symposium on The Electrochemistry of Carbon (1983), S. Sarangapani, J. R. Adridge, and B. Schumm, eds., vol. 84’5, p. 574, The Electrochemical Society, Pennington, N.J. (1984).Google Scholar
  55. 54.
    W. Rüdorff and U. Hofmann, Zeit. Anorg. Chem., 238, (1938).Google Scholar
  56. 55.
    L. R. Ebert, in Proc. Electrochemical Society Symposium on The Electrochemistry of Carbon, S. Sarangapani, J. R. Akridge, and B. Schumm, eds., vol. 84’5, p. 595, The Electrochemical Society, Pennington, N.J. (1984).Google Scholar
  57. 56.
    G. Dresselhaus, in Proc. Electrochemical Society Symposium on The Electrochemistry of Carbon, S. Sarangapani, J. R. Akridge, and B. Schumm, eds., vol. 84’5, p. 5, The Electrochemical Society, Pennington, N.J. (1984).Google Scholar
  58. 57.
    T. Murata and Y. Matsuda, Electrochim. Acta, 27, 795 (1982).CrossRefGoogle Scholar

General Reading References

  1. 1.
    K. Kinoshita, Carbon: Electrochemical and Physical Properties, Wiley, New York (1988).Google Scholar
  2. 2.
    R. L. McCreery, in Carbon Electrodes in Electroanalytical Chemistry, A. J. Bard, ed., vol. 17, p. 221 (1987).Google Scholar
  3. 3.
    R. Barton, Carbon, 10, p. 395 (1972).CrossRefGoogle Scholar
  4. 4.
    Faraday Discussion in Trans. Faraday Soc, 34, The Faraday Society, London (1938).Google Scholar
  5. 5.
    Chemistry and Physics of Carbon, P. L. Walker and P. A. Thrower, eds., 16, 119, Marcel Dekker, New York (1973).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • B. E. Conway
    • 1
  1. 1.Fellow of the Royal Society of CanadaUniversity of OttawaOttawaCanada

Personalised recommendations