Theoretical Treatment and Modeling of the Double Layer at Electrode Interfaces

  • B. E. Conway

Abstract

In order to provide a fundamental basis for understanding the properties and behavior of double-layer types of capacitor devices, this chapter gives a broad account of the theoretical treatments of the structure and capacitance of the double layer at electrode interfaces. This topic has been one of major activity and interest in electrochemistry for about a hundred years, and has now found substantial technological applications. In 1997, the Electrochemical Society Sponsored a major symposium on the double-layer to recognize the 50th anniversary of Grahame’s seminal paper1 in Chemical Reviews (1947).

Keywords

Double Layer Diffuse Layer Surface Charge Density Compact Layer Electrochemical Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Grahame, Chem. Rev., 41, 441 (1947).CrossRefGoogle Scholar
  2. 2.
    G. Gouy, J. Phys., 9, 457 (1910).Google Scholar
  3. 3.
    D. Chapman, Phil. Mag., 25, 475 (1913).Google Scholar
  4. 4a.
    H. von Helmholtz, Monats. Preuss. Acad. Sci., Nov., p. 431 (1881);Google Scholar
  5. 4b.
    H. von Helmholtz, Monats. see also Wied. Ann., 7, 337 (1879);CrossRefGoogle Scholar
  6. 4c.
    H. von Helmholtz, Monats. Ann. Phys. (Leipzig), 89, 211 (1853).Google Scholar
  7. 5.
    O. Stern, Zeit. Elektrochem., 30, 508 (1924).Google Scholar
  8. 6.
    N. F. Mott and R. J. Watts-Tobin, Electrochim. Acta, 4, 79 (1961).CrossRefGoogle Scholar
  9. 7.
    R. J. Watts-Tobin, Phil. Mag., 6, 133 (1961);CrossRefGoogle Scholar
  10. 7.
    R. J. Watts-Tobin, Phil. Mag., 8, 333 (1963).CrossRefGoogle Scholar
  11. 8.
    J. O’M. Bockris, M. A. V. Devanathan, and K. Müller, Proc. Roy. Soc, Lond., A274, 55 (1963).CrossRefGoogle Scholar
  12. 9.
    S. Levine, G. M. Bell, and A. L. Smith, J. Phys. Chem., 73, 3534 (1969).CrossRefGoogle Scholar
  13. 10.
    N. D. Lang and W. Kohn, Phys. Rev., B1, 4555 (1970);CrossRefGoogle Scholar
  14. 10.
    N. D. Lang and W. Kohn, Phys. Rev., B3, 1215 (1971).CrossRefGoogle Scholar
  15. 11.
    W. Schmickler, J. Electroanal. Chem., 176, 383 (1984).CrossRefGoogle Scholar
  16. 12.
    S. Amorkrane and J. P. Badiali, J. Electroanal. Chem., 266, 21 (1989).CrossRefGoogle Scholar
  17. 13.
    B. E. Conway, J. O’M. Bockris, and I. R. Ammar, Trans. Faraday Soc, 47, 756 (1951).CrossRefGoogle Scholar
  18. 14.
    B. E. Conway, Ph.D. thesis, University of London (1949).Google Scholar
  19. 15.
    R. Parsons, in Modern Aspects of Electrochemistry, J. O’M. Bockris and B. E. Conway, eds., vol. 1, Chapter 3, Butterworths, London (1954).Google Scholar
  20. 16.
    D. C. Grahame, J. Chem. Phys., 18, 903 (1950).CrossRefGoogle Scholar
  21. 17.
    J. R. Macdonald, J. Chem. Phys., 22, 1857 (1954).CrossRefGoogle Scholar
  22. 18.
    A. N. Frumkin, Zeit. Phys. Chem., 103, 55 (1923).Google Scholar
  23. 19.
    J. A. V. Butler, Proc. Roy. Soc, Lond., A122, 399 (1929).CrossRefGoogle Scholar
  24. 20.
    G. J. Hills and R. Payne, Trans. Faraday Soc, 61, 316 (1965).CrossRefGoogle Scholar
  25. 21.
    R. Payne, J. Electroanal. Chem., 15, 95 (1967).CrossRefGoogle Scholar
  26. 22.
    R. Payne, J. Phys. Chem., 70, 204 (1966).CrossRefGoogle Scholar
  27. 23.
    R. Payne, in Advances in Electrochemistry and Electrochemical Engineering, P. Delahay and C. W. Tobias, eds., Chapter 2, Interscience, New York (1970).Google Scholar
  28. 24.
    B. E. Conway, Ionic Hydration in Chemistry and Biophysics, Elsevier, New York (1981).Google Scholar
  29. 25.
    J. A. Pople, Proc. Roy. Soc, Lond., A205, 163 (1951).CrossRefGoogle Scholar
  30. 26.
    R. W. Reeves, in Modern Aspects of Electrochemistry, J. O’M. Bockris and B. E. Conway, eds., vol. 9, Chapter 4, Plenum, New York (1974).Google Scholar
  31. 27.
    F. Booth, J. Chem. Phys., 19, 391; 327 and 1451 (1951).CrossRefGoogle Scholar
  32. 28.
    B. E. Conway, Can. J. Chem., 37, 613 (1959).CrossRefGoogle Scholar
  33. 29.
    R. Parsons and R. M. Reeves, J. Electroanal. Chem., 123, 141 (1981).CrossRefGoogle Scholar
  34. 30.
    R. Guidelli, J. Electroanal. Chem., 123, 59 (1981).CrossRefGoogle Scholar
  35. 31.
    J. Topping, Proc Roy. Soc, Lond., A114, 67 (1927).CrossRefGoogle Scholar
  36. 32.
    J. O’M. Bockris and M. Habib, J. Electrochem. Soc, 24, 123 (1976).Google Scholar
  37. 33.
    R. W. Fawcett, J. Phys. Chem., 82, 1385 (1978).CrossRefGoogle Scholar
  38. 34.
    S. Trasatti, J. Chem. Soc, Faraday Trans., 1, 68 (1972).Google Scholar
  39. 35.
    S. Trasatti, J. Electroanal. Chem., 39, 163 (1972);CrossRefGoogle Scholar
  40. 35.
    S. Trasatti, J. Electroanal. Chem., 44, 367 (1973).CrossRefGoogle Scholar
  41. 36.
    S. Trasatti, Surface Sci., 32, 735 (1972).CrossRefGoogle Scholar
  42. 37.
    A. N. Frumkin and B. B. Damaskin, Electrochim. Acta, 19, 173 (1974).CrossRefGoogle Scholar
  43. 38.
    B. B. Damaskin, Elektrokhimiya, 1, 63 (1965).Google Scholar
  44. 39.
    B. E. Conway, H. P. Dhar, and K. M. Joshi, Electrochim. Acta, 18, 789 (1973);CrossRefGoogle Scholar
  45. 39.
    see also B. E. Conway and H. P. Dhar, Croatica Chem. Acta, 45, 173 (1973).Google Scholar
  46. 40.
    B. E. Conway, E. Gileadi, and M. Dzieciuch, Electrochim. Acta, 8, 143 (1963).CrossRefGoogle Scholar
  47. 41.
    G. Valette, J. Electroanal. Chem., 122, 285 (1981).CrossRefGoogle Scholar
  48. 42.
    R. Parsons, J. Electroanal. Chem., 59, 229 (1975).CrossRefGoogle Scholar
  49. 43.
    J. O’M. Bockris and M. Habib, J. Electroanal. Chem., 65, 473 (1975).CrossRefGoogle Scholar
  50. 44.
    J. A. Harrison, J. E. B. Randies, and D. J. Schiffrin, J. Electroanal. Chem., 48, 359 (1973).CrossRefGoogle Scholar
  51. 45.
    R. Guidelli, J. Electroanal. Chem., 197, 77; 103 (1986).Google Scholar
  52. 46.
    J. D. Bernai and R. H. Fowler, J. Chem. Phys., 1, 515 (1933).CrossRefGoogle Scholar
  53. 47.
    B. E. Conway, Ionic Hydration in Chemistry and Biophysics, Elsevier, Amsterdam (1981).Google Scholar
  54. 48.
    S. Marshall and B. E. Conway, J. Electroanal. Chem. J. Chem. Phys., 82, 923 (1984).Google Scholar
  55. 49.
    A. N. Frumkin and I. Bagtozkaya, Electrochim. Acta, 10, 793 (1965).CrossRefGoogle Scholar
  56. 50.
    C. Kemball, Proc. Roy. Soc, Lond., A188, 117 (1947).Google Scholar
  57. 51.
    G. M. Tome and G. N. Patey, Electrochim. Acta, 36, 1677 (1991).CrossRefGoogle Scholar
  58. 52.
    C. W. Outhwaite and R. Molero, Electrochim. Acta, 36, 1685 (1991).CrossRefGoogle Scholar
  59. 53.
    J. Klafter and J. M. Drake, Molecular Dynamics in Restricted Geometries, Wiley, New York (1989).Google Scholar
  60. 54.
    D. Richter, A. J. Dianoux, W. Petry, and J. Teixeira, in Dynamics in Disordered Materials, Springer Proceedings in Physics, Vol. 38, Springer-Verlag, Berlin (1989).CrossRefGoogle Scholar
  61. 55.
    K. L. Ngai and G. B. Wright, Relaxation in Complex Systems, North-Holland, Amsterdam (1991).Google Scholar
  62. 56.
    J. M. Drake, J. Klafter, R. Kopelman, and D. D. Awschalom, eds., Dynamics in Small Confining Systems I, Mat. Res. Soc. Symp. Proc, p. 290 (1993), publ. Material Res. Soc, Warrendale, PA.Google Scholar
  63. 57.
    J. M. Drake, J. Klafter, R. Kopelman, and S. M. Troian, eds., Dynamics in Small Confining Systems II, Mat. Res. Soc. Symp. Proc., p. 366 (1995), Publ. Materials Res. Soc., Warrendale, PA.Google Scholar
  64. 58.
    S. Stapf, R. Kimmich, and R. O. Scitter, Phys. Rev. Lett., 75, 2855 (1995).CrossRefGoogle Scholar
  65. 59.
    G. Liu, Y. Li, and J. Jonas, J. Chem. Phys., 95, 6892 (1991).CrossRefGoogle Scholar
  66. 60.
    G. P. Crawford, R. Stannarius, and J. W. Doane, Phys. Rev., A44, 2558 (1991).CrossRefGoogle Scholar
  67. 61.
    A. M. Brodsky, M. Watanabe, and W. P. Reinhardt, Electrochim. Acta, 36, 1695 (1991).CrossRefGoogle Scholar
  68. 62.
    V. Feldman and M. Partenskii, Electrochim. Acta, 36, 1703 (1991).CrossRefGoogle Scholar
  69. 63.
    M. F. Holovko, O. O. Pizio, and Z. B. Halytch, Electrochim Acta, 36, 1715 (1991).CrossRefGoogle Scholar
  70. 64.
    D. J. Henderson and O. R. Melroy, eds., The Structure of the Electrified Interface, Electrochim. Acta, special symposium volume, 36, pp. 1657’1889 (1991).Google Scholar
  71. 65.
    B. E. Conway, in Theory and Principles of Electrode Processes, Chapter 2, Ronald Press, New York (1964).Google Scholar
  72. 66.
    N. D. Lang and W. Kohn, Phys. Rev., B8, 6010 (1973);CrossRefGoogle Scholar
  73. 66.
    N. D. Lang and W. Kohn, Phys. Rev., B7, 3541 (1973).CrossRefGoogle Scholar
  74. 67.
    O. K. Rice, Phys. Rev., 31, 1051 (1928).CrossRefGoogle Scholar
  75. 68.
    J. P. Badiali, Electrochim. Acta, 31, 149 (1986).CrossRefGoogle Scholar
  76. 69.
    A. Amokrane and J. P. Badiali, in Modern Aspects of Electrochemistry, J. O’M. Bockris, B. E. Conway, and R. E. White, eds., vol. 22, Chapter 1, Plenum, New York (1992).Google Scholar
  77. 70.
    W. Schmickler, J. Electroanal. Chem., 100, 533 (1979).CrossRefGoogle Scholar
  78. 71.
    J. R. Smith, Phys. Rev., 181, 522 (1969).CrossRefGoogle Scholar
  79. 72.
    R. Farina and K. Oldham, J. Electroanal. Chem., 81, 21 (1977).CrossRefGoogle Scholar
  80. 73.
    B. Eversole and G. Lahr, J. Chem. Phys., 9, 798 (1941).CrossRefGoogle Scholar
  81. 74.
    P. Debye and E. Hückel, Phys. Zeit., 24, 185 (1923).Google Scholar
  82. 75.
    P. Debye and E. Hückel, Phys. Zeit., 24, 305 (1923).Google Scholar
  83. 76.
    R. A. Robinson and R. H. Stokes, in Electrolyte Solutions, Chapter 4, Butterworths, London (1955).Google Scholar
  84. 77.
    H. Wendt, private communication (1997).Google Scholar
  85. 78.
    D. H. Everett, Trans. Faraday Soc, 50, 187 (1954).CrossRefGoogle Scholar
  86. 79.
    D. H. Everett, Trans. Faraday Soc, 51, 1551 (1955).CrossRefGoogle Scholar
  87. 80.
    D. H. Everett and P. Nordon, Proc. Roy. Soc, Lond., A259, 351 (1960).Google Scholar
  88. 81.
    Z. Horovitz, in Proc. Fifth Intl. Symposium on Double-layer Capacitors and Similar Devices, S. P. Wolsky and N. Marincic, eds., Florida Educational Seminars, Boca Raton, Fla. (1995).Google Scholar
  89. 82.
    N. K. Adam, The Physics and Chemistry of Surfaces, 3rd ed., Oxford University Press, Oxford (1941).Google Scholar
  90. 83.
    S. K. Rangarajan, Specialist Periodical Reports (Chemical Society, London), 7, 203 (1980);Google Scholar
  91. 83.
    S. K. Rangarajan, see also J. Electroanal. Chem., 82, 93 (1977).CrossRefGoogle Scholar

General Reading References

  1. 1.
    E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, New York (1948).Google Scholar
  2. 2.
    A. W. Adamson, Physical Chemistry of Surfaces, 4th edn., Wiley Interscience, New York (1982).Google Scholar
  3. 3.
    P. Delahay, Double Layer and Electrode Kinetics, Interscience, New York (1965).Google Scholar
  4. 4.
    B. E. Conway, Theory and Principles of Electrode Processes, Ronald Press, New York (1964).Google Scholar
  5. 5.
    M. J. Sparnaay, The Electrical Double Layer, Pergamon, New York (1972).Google Scholar
  6. 6.
    R. Parsons, Chem. Rev., 90, 813 (1990).CrossRefGoogle Scholar
  7. 7.
    D. C. Grahame, Chem. Rev., 41, 441 (1947).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • B. E. Conway
    • 1
  1. 1.Fellow of the Royal Society of CanadaUniversity of OttawaOttawaCanada

Personalised recommendations