Cortical Control of Sequences of Memory-Guided Saccades

  • W. Heide
  • F. Binkofski
  • S. Posse
  • R. J. Seitz
  • D. Kömpf
  • H-J. Freund


To determine the role of frontal and parietal cortical areas for sequences of memory-guided saccades, we performed functional magnetic resonance imaging (fMRI) in 6 healthy adults, using echoplanar sequences, alternating between activation and control conditions. After realignment, spatial normalization and smoothing, individual and group analysis was performed (SPM96b). We applied a triple-step stimulus consisting of 3 successively flashed laser targets that had to be memorized and fixated in darkness. Control conditions included fixation, visually-guided saccades, single memory-guided saccades, and a spatial working memory task (SWM). Triple-step saccades and the SWM task activated both frontal eye fields (FEF), the premotor cortex (PMC), the supplementary eye field (SEF), the anterior cingulate (AC) gyrus, and 3 areas around the medial and posterior portion of the intraparietal sulcus, the probable location of the human parietal eye field. Comparison of the activation patterns in the different task-control conditions permitted the following conclusions: The FEF is important for the initiation of voluntary saccades, the SEF for the triggering of saccadic sequences, the AC for sustained attention, the parietal and PMC areas for spatially-directed attention, spatial cueing, and spatial working memory. The dorsolateral prefrontal cortex was activated only in the SWM task.


Inferior Parietal Lobule Superior Parietal Lobule Spatial Work Memory Saccade Task Cortical Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen RA, Gnadt JW (1989) Posterior parietal cortex. In: Wurtz RH, Goldberg ME (eds) The neurobiology of saccadic eye movements. Elsevier, Amsterdam 3: 315–336.Google Scholar
  2. Anderson TJ, Jenkins IH, Brooks DL, Hawken MB, Frackowiak RSJ, Kennard C (1994) Cortical control of saccades and fixation in man. A PET study. Brain 117: 1073–1084.PubMedCrossRefGoogle Scholar
  3. Colby CL, Duhamel J-R, Goldberg ME (1996) Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J Neurophysiol 76: 2841–2852.PubMedGoogle Scholar
  4. Duhamel J-R, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255: 90–92.PubMedCrossRefGoogle Scholar
  5. Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed-re-sponse performance: evidence for “mnemonic” scotomas. J Neurosci 13: 1479–1497.PubMedGoogle Scholar
  6. Gaymard B, Rivaud S, Pierrot-Deseilligny C (1990) Impairment of sequences of memory-guided saccades after supplementary motor area lesions. Ann Neurol 28:622–626.PubMedCrossRefGoogle Scholar
  7. Gaymard B, Rivaud S, Cassarini JF, Vermersch A-I, Pierrot-Deseilligny C (1996) Involvement of the anterior cin-gulate cortex in eye movement control. Soc Neurosci Abstr 22: 1688.Google Scholar
  8. Goldberg ME, Segraves MA (1989) The visual and frontal cortices. In: Wurtz RH, Goldberg ME (eds) The neurobiology of saccadic eye movements. Elsevier, Amsterdam 3: 283–314.Google Scholar
  9. Goldberg ME, Bruce CJ (1990) Primate frontal eye fields. III. Maintainance of a spatially accurate saccade signal. J Neurophysiol 64: 489–508.PubMedGoogle Scholar
  10. Goldberg ME, Colby CL, Duhamel J-R (1990) Representation of visuomotor space in the parietal lobe of the monkey. Cold Spring Harbor Symp 55: 729–739.CrossRefGoogle Scholar
  11. Hallett PE, Lightstone AD (1976) Saccadic eye movements to flashed targets. Vision Res 16: 107–114.PubMedCrossRefGoogle Scholar
  12. Heide W, Kömpf D (1994) Saccades after frontal and parietal lesions. In: Fuchs AF, Brandt T, Büttner U, Zee DS (eds) Contemporary Ocular Motor and Vestibular Research: A Tribute to David A. Robinson. Georg Thieme Verlag, Stuttgart, pp 225–227.Google Scholar
  13. Heide W, Kömpf D (1997) Specific parietal lobe contribution to spatial constancy across saccades. In: Thier P. Karnath H-O (eds) Parietal Lobe Contributions to Orientation in 3D Space. Springer Verlag, Heidelberg, pp 149–172.Google Scholar
  14. Heide W, Blankenburg M, Zimmermann E, Kömpf D (1995) Cortical control of double-step saccades — implications for spatial orientation. Ann Neurol 38: 739–748.PubMedCrossRefGoogle Scholar
  15. Luna B, Thulborn KR, Strojwas MH, McCurtain BJ, Berman RA, Genovese CR, Sweeney JA (1998) Dorsal regions subserving visually guided saccades in humans: An fMRI study. Cerbral Cortex 8: 40–47.CrossRefGoogle Scholar
  16. Mesulam M-M (1990) Large-scale neurocognitive networks and distributed processing for attention, language and memory. Ann Neurol 28: 597–613.PubMedCrossRefGoogle Scholar
  17. Müri RM, Iba-Zizen MT, Derosier C, Cabanis EA, Pierrot-Deseilligny C (1996) Location of the human posterior eye field with functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 60: 445–448.PubMedCrossRefGoogle Scholar
  18. Mushiake H, Inase M, Tanji J (1990) Selective coding of motor sequence in the supplementary motor area of monkey cerebral cortex. Exp Brain Res 82: 208–210.PubMedCrossRefGoogle Scholar
  19. Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RSJ, Frith CD (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120: 515–533.PubMedCrossRefGoogle Scholar
  20. Olson CR, Musil SY, Goldberg ME (1996) Single neurons in posterior cingulate cortex of behaving macaque: eye movement signals. J Neurophysiol 76: 3285–3300.PubMedGoogle Scholar
  21. Paus T, Petrides M, Evans AC, Meyer E (1993) Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J Neurophysiol 70: 453–469.PubMedGoogle Scholar
  22. Petit L, Orssaud C, Tzourio N, Salamon G, Mazoyer B, Berthoz A (1993) PET study of voluntary saccadic eye movements in humans: basal ganglia-thalamocortical system and cingulate cortex involvement. J Neurophysiol 69: 1009–1017.PubMedGoogle Scholar
  23. Petit L, Orssaud C, Tzourio N, Crivello F, Berthoz A, Mazoyer B (1996) Functional anatomy of a prelearned sequence of horizontal saccades in humans. J Neurosci 16: 3714–3726.PubMedGoogle Scholar
  24. Petit L, Clark VP, Ingeholm J, Haxby JV (1997) Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. J Neurophysiol 77: 3386–3390.PubMedGoogle Scholar
  25. Pierrot-Deseilligny C, Rivaud S, Gaymard B, Muri R, Vermersch A-I (1995) Cortical control of saccades. Ann Neurol 37: 557–567.PubMedCrossRefGoogle Scholar
  26. Schlag J, Schlag-Rey M, Pigarev I (1990) Supplementary eye field — influence of eye position on neural signals of fixation. Exp Brain Res 90: 302–306.Google Scholar
  27. Seitz RJ, Canavan AGM, Herzog H, Teilmann L, Knorr U, Huang Y, Hömberg V (1997) Representation of graphomotor trajectories in the human parietal cortex: evidence for controlled processing and automatic performance. Eur J Neurosci 9: 378–389.PubMedCrossRefGoogle Scholar
  28. Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR (1996) Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. J Neurophysiol 75: 454–468.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • W. Heide
    • 1
  • F. Binkofski
    • 1
  • S. Posse
    • 3
  • R. J. Seitz
    • 2
  • D. Kömpf
    • 1
  • H-J. Freund
    • 2
  1. 1.Department of NeurologyMedical UniversityLübeckGermany
  2. 2.Department of NeurologyHeinrich-Heine-UniversityDüsseldorfGermany
  3. 3.Institute of MedicineResearch Center JülichJülichGermany

Personalised recommendations