Skip to main content

Updating the Location of Visual Objects in Space Following Vestibular Stimulation

  • Chapter
Book cover Current Oculomotor Research

Abstract

When updating the location of a visual object in space while moving around, we have to rely on sensory information from different modalities. Retinal signals provide us with a notion of the object’s position on the retina, but we also have to take into account eye position in the head and head position in space. In other words, we perform a coordinate transformation from a retinotopic reference frame via a craniotopic to a spatiotopic reference frame (e.g. Andersen et al. 1993). Human psychophysical studies indicate that these transformations show specific errors under certain conditions, from which we may learn how the brain performs these complex neuronal computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen RA, Snyder LH, Li CS, Stricanne B (1993) Coordinate transformations in the representation of spatial information. CurrOpin Neurobiol 3: 171–6

    Article  CAS  Google Scholar 

  • Bloomberg J, Melvill Jones G, Segal B, McFarlane S, Soul J (1988) Vestibular-contingent voluntary saccades based on cognitive estimates of remembered vestibular information. Adv Oto-Rhino-Laryngology 41: 71–75

    CAS  Google Scholar 

  • Blouin J, Gauthier GM, van Donkelaar P, Vercher JL (1995a) Encoding the position of a flashed visual target after passive body rotations. Neuroreport 6: 1165–1168

    Article  PubMed  CAS  Google Scholar 

  • Blouin J, Gauthier GM, Vercher JL (1995b) Failure to update the egocentric representation of the visual space through labyrinthine signal. Brain & Cognition 29: 1–22

    Article  CAS  Google Scholar 

  • Blouin J, Gauthier GM, Vercher JL (1997) Visual object localization through vestibular and neck inputs. 2: Updating off-mid-sagittal-plane target positions. J Vestib Res 7: 137–43

    Article  PubMed  CAS  Google Scholar 

  • Bock O (1986) Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Exp Brain Res 64: 467–481

    Article  Google Scholar 

  • Bock O (1993) Localization of objects in the peripheral visual field. Behav Brain Res 56: 77–84

    Article  PubMed  CAS  Google Scholar 

  • Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neuro-physiol 34: 661–75

    CAS  Google Scholar 

  • Israel I, Berthoz A (1989) Contribution of the otoliths to the calculation of linear displacement. J Neurophysiol 62: 247–263

    PubMed  CAS  Google Scholar 

  • Maurer C, Kimmig H, Trefzer A, Mergner T. Visual object localization through vestibular and neck inputs. I. Localization with respect to space and relative to the head and trunk mid-saggital planes. J Vest Research 7:113–135,1997.

    Google Scholar 

  • Mergner T, Hlavacka F, Schweigart G (1993) Interaction of vestibular and proprioceptive inputs for human self-motion perception. J Vest Res, 3: 41–57

    CAS  Google Scholar 

  • Mergner T, Huber W, Becker W (1997) Vestibular-neck interaction and transformation of sensory coordinates. J Vestib Res 7: 347–367

    Article  PubMed  CAS  Google Scholar 

  • Mergner T, Nasios G, Anastasopoulos D (1998) Vestibular memory-contingent saccades involve somatosensory input from the body support. NeuroReport 9: 1469–1473

    Article  PubMed  CAS  Google Scholar 

  • Mergner T, Siebold C, Schweigart G, Becker W (1991) Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation. Exp Brain Res, 85: 389–404

    Article  PubMed  CAS  Google Scholar 

  • Mergner T, Rottler G, Kimmig H, Becker W (1992) Role of vestibular and neck inputs for the perception of object motion in space. Exp Brain Res 89: 655–668

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Bronstein AM (1995) The perception of head and neck angular displacement in normal and labyrinthine-defective subjects. A quantitative study using a ‘remembered saccade’ technique. Brain 118: 1157–1168

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nasios, G., Rumberger, A., Maurer, C., Mergner, T. (1999). Updating the Location of Visual Objects in Space Following Vestibular Stimulation. In: Becker, W., Deubel, H., Mergner, T. (eds) Current Oculomotor Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3054-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3054-8_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3308-9

  • Online ISBN: 978-1-4757-3054-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics