The Volume Degree of Freedom in Itinerant Electron Ferromagnetism

  • Duk Joo Kim


In Chapter 5 we discussed the elastic property of a metal. There we noted that the result (5.4.27) succeeds in qualitatively explaining the various aspects of the elastic behavior of ferromagnetic metals. If we look into the details of experimental results, however, we find that our result in Chapter 5 is not satisfactory. See, for instance, Figs.5.2 (a) and 5.2(b): as temperature lowers toward T C from above, the elastic constants first increase before decreasing. Such a behavior can not be accounted for by (5.4.27). How can we, then, improve such a result of Chapter 5? In this chapter we show that the goal is achieved by properly taking into account the contributions of thermal phonons to elastic constants; the situation is exactly the same as in Chapter 6 of going beyond the Stoner model in studying itinerant electron magnetism.


Magnetic Susceptibility Bulk Modulus Thermal Expansion Coefficient Spin Wave Equilibrium Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    E. G. Brovman, Yu. Kagan and A. Kholas, Zh. Eksp. Teor. Fiz. 57 (1969) 1635Google Scholar
  2. E. G. Brovman, Yu. Kagan and A. Kholas, Soy. Phys. JETP 30 (1970) 883ADSGoogle Scholar
  3. 7.2
    G. D. Mahan, Many Particle Physics ( Plenum, New York, 1990 ).CrossRefGoogle Scholar
  4. 7.3
    M. W. Long and W. Yeung, J. Phys. C. 19 (1986) 5077.ADSCrossRefGoogle Scholar
  5. 7.4
    V. L. Moruzzi, A. R. Williams and J. F. Janak, Phys. Rev. B. 15 (1977) 2854.Google Scholar
  6. 7.5
    D. J. Kim, M. W. Long and W. Yeung, Phys. Rev. B. 36 (1987) 429.ADSCrossRefGoogle Scholar
  7. 7.6
    See for instance [7.2] p.411.Google Scholar
  8. 7.7
    For a recent review and references, I. A. Campbell and G. Creuzet, in Metallic Magnetism, ed. H. Capellmann ( Springer, Berlin, 1987 ). p. 207Google Scholar
  9. E. F. Wassermann, in Ferromagnetic Materials, Vol. 5 eds. E. P.Wohlfarth and K. H. J. Busschow ( North-Holland, Amsterdam, 1990 ) p. 237Google Scholar
  10. P. E. Brommer and J. J. M. Franse, ibid. p. 323; Proceeding of the International Symposium on Magnetoelasticity in Transion Metals and Alloys,eds. M. Shimizu, Y. Nakamura and J. J. M. Franse, Physica 119B+C (1983) 1Google Scholar
  11. P. E. Brommer and J. J. M. Franse, Proceeding of the International Symposium on Magnetoelasticity and Electronic Structure of Transition Metals, Alloys and Films,eds. E. F. Wassermann, K. Usadel and D.Wagner, Physica B 167 (1989).1.Google Scholar
  12. 7.8
    R. J. Weiss, Proc. Phys. Soc. London 82 (1963) 281.Google Scholar
  13. 7.9
    V. L. Moruzzi, Physica B161 (1989) 99.CrossRefGoogle Scholar
  14. V. L. Moruzzi, Phys. Rev. B 41 (1990) 6939.ADSCrossRefGoogle Scholar
  15. M. Podgórny, Physica B161 (1989) 110.CrossRefGoogle Scholar
  16. E. G. Moroni and T. Jarlborg, Phys. Rev. B 41 (1990)Google Scholar
  17. P. Entel, E. Hoffmann, P. Mohn, K. Schwarz and Phys. Rev. B 47 (1993) 8706, and references therein.Google Scholar
  18. 7.10
    D. Wagner, J. Phys. Condens. Matter 1 (1989) 4635.ADSCrossRefGoogle Scholar
  19. M. Schröter, P. Entel and S. G. Mishra, J. Magn. (1990) 163.Google Scholar
  20. 7.11
    M. Shiga, Solid State Commun. 10 (1972) 1233.ADSCrossRefGoogle Scholar
  21. W. F. Schlosser, Phys. Status. Solidi. A 17 (1973) 199CrossRefGoogle Scholar
  22. Y. Kakehashi, J. Phys. Soc. Jpn. 49 (1980) 2421; 2236.Google Scholar
  23. Y. Kakehashi and J. H. Samson, Phys. Rev. B 34 (1986) 1734.Google Scholar
  24. 7.12
    T. Moriya and K. Usami, Solid State Commun. 34 (1980) 95.ADSCrossRefGoogle Scholar
  25. H. Hasegawa, Physica 119 B (1983) 15.Google Scholar
  26. A. J. Holden, V. Heine and J. H. Samson, J. Phys. F 14 (1984) 1005.Google Scholar
  27. 7.13
    A. Z. Menshikov, Physica B 161 (1989) 1.ADSCrossRefGoogle Scholar
  28. P. J. Brown, I. K. Jassim, K.-U. Neumann and K. R. A. Ziebeck, Physica B 161 (1989) 9.ADSCrossRefGoogle Scholar
  29. 7.14
    V. M. Zverev and V. P. Silin, Zh. Eksp. Teor. Fiz. 93 (1987) 709Google Scholar
  30. M. Zverev and V. P. Silin, Soy. Phys. JETP 66 (1987) 401Google Scholar
  31. 7.15
    D. J. Kim, Phys. Rev. B 39 (1989) 6844.ADSCrossRefGoogle Scholar
  32. 7.16
    D. J. Kim and H. Koyama, Physica B 161 (1989) 165.ADSCrossRefGoogle Scholar
  33. 7.17
    D. J. Kim, T. Kizaki, N. Miyai, J. Iwai, N. Hino and S. Fukumoto, J. Korean Phys. Soc. (Proc. Suppl.) 28 (1995) S203.Google Scholar
  34. 7.18
    J. Friedel and C. M. Sayers, J. de Phys. (Paris) 38 (1977) L-263.Google Scholar
  35. 7.19
    V. L. Moruzzi and P. M. Marcus, Phys. Rev. B 48, 7665 (1993)ADSCrossRefGoogle Scholar
  36. 7.20
    D. J. Kim, S. Fukumoto, T. Kizaki, N. Miyai, H. Saita and H. Hino, in The Invar Effect: A Centennial Symposium, ed. J. Witternauer (TMS, Pennsylvania, 1997 ) p. 75.Google Scholar
  37. 7.21
    T. Kizaki, N. Miyai, H. Saita, N. Hino, D. Isoda, T. Maehashi, H. Shibuya and D. J. Kim, Physica B 237–238 (1997) 506.ADSCrossRefGoogle Scholar
  38. 7.22
    J. Iwai, N. Miyai, T. Kizaki and D. J. Kim, J. Magn. Magn. Mat. 140–144 (1995), 243.ADSCrossRefGoogle Scholar
  39. 7.23
    LI. Manosa, G. A. Saunders, H. Radhi, U. Kawald, J. Pelz! and H. Bach, J. Phys. Condens. Matter 3 (1991), 2273Google Scholar
  40. G. A. Saunders, H. B. Senin, H. A. A. Sidek and J. Pelzl, Phys. Rev. B 48 (1993), 15801.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Duk Joo Kim
    • 1
  1. 1.Late of Aoyama Gakuin UniversityTokyoJapan

Personalised recommendations