Charge and Spin Fluctuations, Phonons, and Electron Correlation

  • Duk Joo Kim
Chapter

Abstract

The fundamental collective excitations of a metal are known to be charge and spin fluctuations, in addition to phonons. In chapters 6 and 7, we saw aspects of their roles in magnetism, volume, and elasticity properties of a metal. In this chapter we show how the thermodynamic potential and the free energy of a metal can be obtained in terms of these three kinds of collective excitations. This result reconfirms the basis of our discussions given in Chapters 6 and 7. Also we point out some hitherto unknown problems concerning the treatment of spin waves and spin fluctuations.

Keywords

Hubbard Model Thermodynamic Potential Ferromagnetic State Paramagnetic State Spin Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 10.1
    T. V. Ramakrishnan, Phys. Rev. B 10 (1974) 4114.ADSCrossRefGoogle Scholar
  2. 10.2
    D. J. Kim, Phys. Rev. B 37 (1988) 7643.ADSCrossRefGoogle Scholar
  3. 10.3
    P. Nozières and D. Pines, Nuovo Cimento 9 (1958) 470.MATHCrossRefGoogle Scholar
  4. 10.4
    F. Englert and R. Brout, Phys. Rev. 120 (1960) 1085.Google Scholar
  5. 10.5
    D. J. Kim, Phys. Rev. B 9 (1974) 3307.ADSCrossRefGoogle Scholar
  6. 10.6
    D. Pines, Phys. Rev. 92 (1953) 626.ADSMATHCrossRefGoogle Scholar
  7. 10.7
    K. Sawada, K. A. Brueckner, N. Fukuda and R. Brout, Phys. Rev. 108 (1957) 507.MathSciNetADSMATHCrossRefGoogle Scholar
  8. 10.8
    D. J. Kim, J. Phys. Soc. Jpn. 66 (1997) 1583.Google Scholar
  9. 10.9
    P. F. de Chatel, F. R. de Boer, W de Wood, J. H. J. Fluitman and C. J. Schinkel, J. de Physique, 32 (1971) C 999Google Scholar
  10. W. de Dood and P. F. de Chatel, J. Phys. F3 (1973) 1039.Google Scholar
  11. 10.10
    S. K. Dhar, K. A. Gschneidner, Jr., L. L. Miller and D. C. Johnston, Phys. Rev. B 40 (1989) 11489, and references therein.Google Scholar
  12. 10.11
    G. G. Lonzarich and L. Taillefer, J. Phys. C. 18 (1985) 4339.ADSCrossRefGoogle Scholar
  13. 10.12
    P. C. E. Stamp, J. Phys. F 15 (1985) 1829.Google Scholar
  14. 10.13
    D. J. Kim and C. Tanaka, Phys. Rev. B 3 7 (1988) 3948.ADSCrossRefGoogle Scholar
  15. 10.14
    G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 43 (1962) 1005Google Scholar
  16. G. M. Eliashberg, Sov. Phys. JETP 16 (1963) 780ADSGoogle Scholar
  17. 10.15
    G. Grimval, Phys. Kondens. Materie 9 (1969) 283.Google Scholar
  18. 10.16
    H. Fröhlich, Proc. Roy. Soc. (London) A 215 (1952) 291.ADSMATHCrossRefGoogle Scholar
  19. 10.17
    M. Danino and A. W. Overhauser, Phys. Rev. B 26 (1982) 1569.Google Scholar
  20. 10.18
    D. Coffey and C. J. Pethick, Phys. Rev. B 37 (1988) 442.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Duk Joo Kim
    • 1
  1. 1.Late of Aoyama Gakuin UniversityTokyoJapan

Personalised recommendations