MOS Transistor Modeling Issues for RF Circuit Design

  • Christian Enz
  • Yuhua Cheng

Abstract

This paper presents the basis of the modeling of the MOS transistor for circuit simulation at radio-frequency (RF). A physical equivalent circuit that can easily be implemented as a Spice subcircuit is first derived. In addition to the intrinsic device and the source and drain series resistance, the model also has a gate resistance, that is fundamental to correctly model the frequency and noise behavior. The subcircuit also includes a substrate network that accounts for the signal coupling occurring at HF from the drain to the source and the bulk. It is shown that the latter mainly affects the output admittance y 22. The bias and geometry dependence of all the subcircuit components, leading to a scalable model, are then discussed with emphasis on the substrate resistances. Analytical expressions of the Y-parameters, the transit frequency and the maximum oscillation frequency are established and compared to measurements made on a 0.25 p m CMOS process. The Y-parameters and transit frequency simulated with this scalable model versus frequency, geometry and bias are in good agreement with measured data The non-quasi-static effects and their practical implementation in the Spice subcircuit are then briefly discussed. Finally, a new thermal noise model is introduced and compared to noise models available in BSIM3v3. The parameters used to characterize the noise at HF are then presented and the scalable model is favorably compared to measurements made on the same devices.

Keywords

Thermal Noise Strong Inversion Intrinsic Capacitance Velocity Saturation Bias Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. P. Voinigescu, S. W. Tarasewicz, T. Mac Elwee and J. Ilowski, “An Assessment of the State-of-the-Art 0.5µm Bulk CMOS Technology for RF Applications,” Proc. of the Int. Electron Devices Meeting, pp. 29.5.1–29. 5. 4, Dec. 1995.Google Scholar
  2. [2]
    H. S. Momose, E. Morifuji, T. Yoshitomi, T. Ohguro, M. Saito, T. Morimoto, Y. Katsumata and H. Iwai, “High-Frequency AC Characteristics of 1.5nm Gate Oxide MOSFETs,” Proc. of the Int. Electron Devices Meeting, pp. 105–108, Dec. 1996.Google Scholar
  3. [3]
    H. S. Momose, R. Fujimoto, S. Otaka, E. Morifuji, T. Ohguro, T. Yoshitomi, H. Kimijima, S. I. Nakamura, T. Morimoto, Y. Katsumata, H. Tanimoto and H. Iwai, “RF Noise in 1.5 nm Gate Oxide MOSFETs and Evaluation of the NMOS LNA Circuit Integrated on a Chip,” Proc. of the VLSI Symposium on Technology, June 1998.Google Scholar
  4. [4]
    L. E. Larson, “Integrated Circuit Technology Options for RFIC’s–Present Status and Future Directions,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 387–399, March 1998.CrossRefGoogle Scholar
  5. [5]
    H. S. Momose, R. Fujimoto, S. Otaka, E. Morifuji, T. Ohguro, T. Yoshitomi, H. Kimijima, S. I. Nakamura, T. Morimoto, Y. Katsumata, H. Tanimoto and H. Iwai, `RF Noise in 1.5 nm Gate Oxide MOSFETs and Evaluation of the NMOS LNA Circuit Integrated on a Chip,“ Proc. of the VLSI Symposium on Technology, June 1998.Google Scholar
  6. [6]
    A. Abidi, “Direct-Conversion Radio Transceivers for Digital Communications,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 1399–1410, Dec. 1995.CrossRefGoogle Scholar
  7. [7]
    A. Abidi, A. Rofougaran, G. Chang, J. Rael, “The future of CMOS wireless transceivers,” Int. Solid-State Circ. Conf. Dig. of Tech. Papers, pp. 118–119, Feb. 1997.Google Scholar
  8. [8]
    J. Rudell, J. Ou, T. Cho, G. Chien, F. Brianti, J. Weldon, P. Gray, “A 1.9 GHz wide-band IF double conversion CMOS integrated receiver for cordless telephone applications,” Int. Solid-State Circ. Conf. Dig. of Tech. Papers, pp. 304–305, Feb. 1997.Google Scholar
  9. [9]
    B. Razavi, “Architectures and circuits for RF CMOS Receivers,” Proc. IEEE Custom Integrated Circuits Conf, pp. 393–400, May 1998.Google Scholar
  10. [10]
    A. Rofougaran, J. Y.-C. Chang, M. Rofougaran and A. Abidi, “A 1GHz CMOS RF Front-End IC for Direct-Conversion Wireless Receiver,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 880–889, July 1996.CrossRefGoogle Scholar
  11. [11]
    P. Orsatti, F. Piazza, Q. Huang and T. Morimoto, “A 20mA-Receive, 55mA-Transmit, Single-Chip GSM Transceiver in 0.2511m CMOS,” Int. Solid-State Circ. Conf. Dig. of Tech. Papers, Feb. 1999.Google Scholar
  12. [12]
    T. Cho, E. Dukatz, M. Mack, D. Mac Nally, M. Marringa, S. Mehta, C. Nilson, L. Plouvier and S. Rabii, “A Single-Chip CMOS Direct-Conversion Transceiver for 900MHz Spread-Spectrum Digital Cordless Phones, Int. Solid-State Circ. Conf. Dig. of Tech. Papers, Feb. 1999.Google Scholar
  13. [13]
    Y. Cheng et al., BSIM3, Version 3.0 Manual,“ Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, 1996. (http://www-device.EECS.Berkeley.EDU/—bsim3/)
  14. [14]
    Y. Cheng et al., “A Physical and Scalable I-V Model in BSIM3v3 for Analog/Digital Circuit Simulation,” IEEE Transactions on Electron Devices, Vol. 44, No. 2, pp. 277–287, February 1997.CrossRefGoogle Scholar
  15. [15]
    MOS MODEL 9 documentation. (information about MOS model 9 is available at http://www-eu.semiconductors.philips.com/Philips_Models/publications_mm9.stm).
  16. [16]
    D. B. M. Klaassen, “Compact Modeling of Submicron CMOS’,” Proc. of the European Solid-State Circ. Conf., pp. 40–46, Edition Frontieres, 1996.Google Scholar
  17. [17]
    M. Bucher, C. Lallement, C. Enz, F. Theodoloz and F. Krummenacher, “The EPFL-EKV MOSFET Model, Version 2.6, Technical Report, LEG-EPFL, 1997. (documentation and more information on EKV is available at http://legwww.epfl.ch/ekv/).Google Scholar
  18. [18]
    C. C. Enz, F. Krummenacher and E. A. Vittoz, “An Analytical MOS Transistor Model Valid in All Regions of Operation and Dedicated to Low-Voltage and Low-Current Applications,” special issue of the Analog Integrated Circuits and Signal Processing journal on Low-Voltage and Low-Power Design, vol. 8, pp. 83–114, July 1995.CrossRefGoogle Scholar
  19. [19]
    C. C. Enz, “MOS Transistor Modeling Dedicated to Low-Current and Low-Voltage Analog Circuit Design and Simulation,” in Low-power HF Microelectronics: Integrating Process, Device and Design for Manufacturability, Edited by G. Machado, lEE Book Publishing, 1996, Chapter 7, pp. 247–299, ISBN 0 85296 874 4.Google Scholar
  20. [20]
    M. Bucher, C. Lallement, C. Enz, F. Theodoloz and F. Krummenacher, “Scalable Gnil Based MOSFET Model,” Proc. of the Int. Semiconductor Device Research Symp., Dec. 1997.Google Scholar
  21. [21]
    Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd-Edition, Mc-Graw-Hill, 1999.Google Scholar
  22. [22]
    M. C. Ho, K. Green, R. Culbertson, J. Y. Yang, D. Ladwig and P. Ehnis, “A Physical Large-Signal Si MOSFET Model for RF Circuit Design,” IEEE M7T-S Digest, pp. 391–394, June 1997.Google Scholar
  23. [23]
    R. R. J. Vanoppen, J. A. M. Geelen and D. B. M. Klaassen, “The high-frequency analogue performance of MOSFETs,” Proc. of the Int. Electron Devices Meeting, pp. 173–176, 1994.Google Scholar
  24. [24]
    D. B. M. Klaassen, B. Nauta and R. R. J Vanoppen, RF modeling of MOSFETs in Analog Circuit Design: MOST RF Circuits, Sigma-Delta Converters and Translinear Circuits, eds. W. Sansen, R. J. van de Plassche and J. H. Huijsing, pp. 3–24, Kluwer Academic Publishers, 1996.Google Scholar
  25. [25]
    W. Liu, R. Gharpurey, M. C. Chang, U. Erdogan, R. Aggarwal and J. P. Mattia, “R.F.MOSFET Modeling Accounting for Distributed Substrate and Channel Resistances with Emphasis on the BSIM3v3 SPICE Model,” Proc. of the Int. Electron Devices Meeting, pp. 309–312, Dec. 1997.Google Scholar
  26. [26]
    D. R. Pehlke, M. Schroter, A. Burstein, M. Matloubian and M. F. Chang, “High-Frequency Application of MOS Compact Models and their Development for Scalable RF MOS Libraries,” Proc. IEEE Custom Integrated Circuits Conf., pp. 219–222, May 1998.Google Scholar
  27. [27]
    J.-J. Ou, X. Jin, I. Ma, C. Hu and P. Gray, “CMOS RF Modeling for GHz Communication IC’s,” Proc. of the VLSI Symposium on Technology, June 1998.Google Scholar
  28. [28]
    Y. Cheng, M. Schroter, C. Enz, M. Matloubian and D. Pehlke, “RF Modeling Issues of Deep-submicron MOSFETs for Circuit Design,” Proc. of the IEEE Int. Conf. on Solid-State and Integrated Circ. Tech., pp. 416–419, Oct. 1998.Google Scholar
  29. [29]
    L. F. Tiemeijer and D. B. M. Klassen, “Geometry Scaling of the Substrate Loss of RF MOSFETs,” Proc. of the European Solid-State Dey. Res. Conf., pp. 481–483, Sept. 1998.Google Scholar
  30. [30]
    S. H. Jen, C. Enz, D. R. Pehlke, M. Schroter, B. J. Sheu, “Accurate MOS Transistor Modeling and Parameter Extraction Valid up to 10-GHz,” Proc. of the European Solid-State Dev. Res. Conf., Bordeaux, pp. 484–487, Sept. 1998.Google Scholar
  31. [31]
    X. Jin, J. -J. Ou, C.-H. Chen, W. Liu, M. J. Deen, P. R. Green and C. Hu, “An Effective Gate Resistance Model for CMOS RF and Noise Modeling,” Proc. of the Int. Electron Devices Meeting, Dec. 1998.Google Scholar
  32. [32]
    C. E. Biber, M. L. Schmatz, T. Morf, U. Lott and W. Bachtold, “A Nonlinear Microwave MOSFET Model for Spice Simulators,” IEEE Trans. Microwave Theory Tech., vol. 46, No. 5, pp. 604–610, May 1998.CrossRefGoogle Scholar
  33. [33]
    C. E. Biber, “Microwave Modeling and Circuit Design with Sub-micron CMOS Technologies,” PhD Dissertation No. 12505, Swiss Federal Institute of Technology, Zurich (ETHZ ), 1998.Google Scholar
  34. [34]
    M. Bagheri and Y. Tsividis, “A Small-Signal dc-to-High Frequency Non-quasi-static Model for the Four-Terminal MOSFET Valid in All Regions of Operations,” IEEE Transactions on Electron Devices, vol. ED-32, No. 11, pp. 2383–2391, Nov. 1985.Google Scholar
  35. [35]
    W. Sansen and P. Vandeloo, “Modeling the MOS Transistor at High Frequencies,” Electron. Lett., vol. 22, No. 15, pp. 810–812, July 1986.CrossRefGoogle Scholar
  36. [36]
    P. Mancini, C. Turchetti and G. Masetti, “A Non-Quasi-Static Analysis of the Transient Behavior of the Long-Channel MOST Valid in All Regions of Operation,” IEEE Transactions on Electron Devices, vol. ED-34, No. 2, pp. 325–334, Feb. 1987.Google Scholar
  37. [37]
    P. Vandeloo and W. Sansen, “Measuring and Fitting of the Small-Signal Model of the MOS Transistor for High Frequency Applications,” IEEE Instrum. Meas. Technology Conf., pp. 232–237, Apr. 1988. Google Scholar
  38. [38]
    H. J. Park, P. K. Ko and C. Hu, “A Non-Quasi-Static MOSFET Model for SPICE - Transient Analysis,” IEEE Transactions on Electron Devices, vol. 36, pp. 561–576, March. 1989.Google Scholar
  39. [39]
    P. J. V. Vandeloo and W. M. C. Sansen, “Modeling of the MOS Transistor for High Frequency Analog Design,” IEEE Transactions on Computer-Aided Design, vol. 8, No. 7, pp. 713–723, July 1989.CrossRefGoogle Scholar
  40. [40]
    K. -W. Chai and J. Paulos, “Unified Nonquasi-Static Modeling of the Long-Channel Four-Terminal MOSFET for Large-and Small-Signal Analyses in All Operating Regimes,” IEEE Transactions on Electron Devices, vol. 36, pp. 2513–2520, Nov. 1989.CrossRefGoogle Scholar
  41. [41]
    P. Roblin, S. C. Kang and H. Morkoc, “Analytical Solution of the Velocity-Saturated MOSFET/MODFET Wave Equation and Its Application to the Prediction of the Microwave Characteristics of MODFET’s,” IEEE Transactions on Electron Devices, vol. 37, No. 7, pp. 1608–1622, July 1990.CrossRefGoogle Scholar
  42. [42]
    L.-J. Pu and Y. Tsividis, “Small-Signal Parameters and Thermal Noise of the Four-Terminal MOSFET in Non-quasi-static Operation,” Solid-State Electronics, Vol. 33, No. 5, pp. 513–521, 1990.CrossRefGoogle Scholar
  43. [43]
    H. J. Park, P. K. Ko and C. Hu, “A Charge Conserving Non-Quasi-Static (NQS) MOSFET Model for SPICE Transient Analysis,” IEEE Transactions on Computer-Aided Design, vol. 10, pp. 629–642, May 1991.CrossRefGoogle Scholar
  44. [44]
    P. Roblin, S. C. Kang and W.-R. Liou, “Improved Small-Signal Equivalent Circuit Model and Large-Signal State Equations for the MOSFET/MODFET Wave Equation,” IEEE Transactions on Electron Devices, vol. 38, No. 8, pp. 1706–1991, Aug. 1991.CrossRefGoogle Scholar
  45. [45]
    S. C. Kang and P. Roblin, “Optimal Second-Order Small-Signal Model for Long-and Short-Channel Three-Terminal MOSFET/MODFET Wave Equation,” IEEE Transactions on Electron Devices, vol. 39, No. 8, pp. 1909–1915, Aug. 1992.CrossRefGoogle Scholar
  46. [46]
    H. J. Park, P. K. Ko and C. Hu, “A Non-Quasi-Static MOSFET Model for SPICE–AC Analysis,” IEEE Transactions on Computer-Aided Design, vol. 11, pp. 1247–1257, Oct. 1992.CrossRefGoogle Scholar
  47. [47]
    R. Daniels, A. T. Yang and J. P. Harrang, “A Universal Large/Small Signal 3-Terminal FET Model Using a Nonquasi-Static Charge-Based Approach,” IEEE Transactions on Electron Devices, vol. 40, pp. 1723–1729, Oct. 1993.CrossRefGoogle Scholar
  48. [48]
    T. Smedes and F. M. Klaassen, “An Analytical Model for the Non-Quasi-Static Small-Signal Behaviour of Submicron MOSFETs,” Solid-State Electronics, vol. 38, No. 1, pp. 121130, 1995.Google Scholar
  49. [49]
    W. Liu, C. Bowen and M.-C. Chang, “A CAD-Compatible Non-Quasi-Static MOSFET Model,” Proc. of the Int. Electron Devices Meeting, pp. 151–154, Dec. 1996.Google Scholar
  50. [50]
    Y. Tsividis and K. Suyama, “MOSFET Modeling for analog circuit CAD: problems and prospects”, IEEE Journal of Solid-State Circuits, vol. SC-29, pp. 210–216, March 1994.Google Scholar
  51. [51]
    N. Arora, R. Rios and C.-L. Huang, “Modeling the Polysilicon Depletion Effect and its Im-Google Scholar
  52. pact on Submicrometer CMOS Circuit Performance,“ IEEE Transactions on Electron Devices,vol. 42, No. 5, pp. 935–943, May 1995.Google Scholar
  53. [52]
    H. Iwai, M. R. Pinto, C. S. Rafferty, J. E. Oristian and R. W. Dutton, “Analysis of Velocity Saturation and Other Effects on the Short-Channel MOS Transistor Capacitances,” IEEE Transactions on Computer-Aided Design, vol. 6, No. 2, pp. 173–184, March 1987.CrossRefGoogle Scholar
  54. [53]
    P. Klein, “A Compact-Charge LDD-MOSFET Model,” IEEE Transactions on Electron Devices, vol. 44, No. 9, pp. 1483–1490, Sept. 1997.CrossRefGoogle Scholar
  55. [54]
    M. Pfost, H.-M. Rein and T. Holzwarth, “Modeling Substrate Effects in the Design of High-Speed Si-Bipolar IC’s,”, IEEE Journal of Solid-State Circuits, vol. 31, No. 10, pp. 1493–1501, Oct. 1996.CrossRefGoogle Scholar
  56. [55]
    E. Abou-Allam, T. Manku, “A Small-Signal MOSFET Model for Radio Frequency IC Applications,” IEEE Transactions on Computer-Aided Design, vol. 16, pp. 437–447, May 1997.CrossRefGoogle Scholar
  57. [56]
    M. C. A. M. Koolen, J. A. M. Geelen and M. P. J. G. Versleijen, “An Improved De-Embedding Technique for On-Wafer High-Frequency Characterization,” IEEE Proc. Bipolar Circuit and Technology Meeting, pp. 188–191, 1991.Google Scholar
  58. [57]
    M. Bucher, C. Lallement and C. C. Enz, “An Efficient Parameter Extraction Methodology for the EKV MOST Model,” Proc. IEEE Int. Conf on Test Structures, pp. 145–150, March 1996.Google Scholar
  59. [58]
    H. Beneking, High-Speed Semiconductor Devices, Chapman & Hall, 1994.Google Scholar
  60. [59]
    A. van der Ziel, Noise in Solid-State Devices and Circuits, John Wiley, 1986.Google Scholar
  61. [60]
    S. Tedja, J. Van der Spiegel and H. H. Williams, “Analytical and Experimental Studies of Thermal Noise in MOSFET’ s,” IEEE Transactions on Electron Devices, vol. 41, No. 11, pp. 2069–2075, Nov. 1994.CrossRefGoogle Scholar
  62. [61]
    D. P. Triantis, A. N. Birbas and S. E. Plevridis, “Induced Gate Noise in MOSFETs Revisited: The Submicron Case,” Solid-State Electronics, vol. 41, No. 12, pp. 1937–1942, 1997.CrossRefGoogle Scholar
  63. [62]
    D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low-Noise Amplifier,” IEEE Journal of Solid-State Circuits, vol. 32, No. 5, pp. 745–759, May 1997.CrossRefGoogle Scholar
  64. [63]
    T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 1998.Google Scholar
  65. [64]
    C. Chen and M. J. Deen, “High Frequency Noise of MOSFETs I: Modeling,” Solid-State Electronics, vol. 42, pp. 2069–2081, Nov. 1998.CrossRefGoogle Scholar
  66. [65]
    C. Chen, M. J. Deen, Z. X. Yan, M. Schroter and C. Enz, “High Frequency Noise of MOSFETs II: Experiments,” Solid-State Electronics, vol. 42, pp. 2083–2092, Nov. 1998.CrossRefGoogle Scholar
  67. [66]
    A. Abidi, “High-Frequency Noise Measurements on FET’s with Small Dimensions.” IEEE Transactions on Electron Devices, vol. ED-33, No. 11, pp. 1801–1805, Nov. 1986.Google Scholar
  68. [67]
    B. Wang, J. R. Hellums and C. G. Sodini, “MOSFET Thermal Noise Modeling for Analog Integrated Circuits,” IEEE Journal of Solid-State Circuits, vol. 29, No. 7, pp. 833–835, July 1994.CrossRefGoogle Scholar
  69. [68]
    D. P. Triantis, A. Birbas and D. Kondis, “Thermal Noise Modeling for Short-Channel MOSFET’s,” IEEE Transactions on Electron Devices, vol. 43, No. 11, pp. 1950–1955, Nov. 1996.CrossRefGoogle Scholar
  70. [69]
    P. Klein, “An Analytical Thermal Noise Model of Deep-Submicron MOSFETs for Circuit Simulation with Emphasis on the BSIM3v3 SPICE Model,” Proc. of the European Solid-State Dey. Res. Conf, pp. 460–463, Sept. 1998.Google Scholar
  71. [70]
    K. Aufinger and J. Boeck, “A Straightforward Noise De-Embedding Method and its Application to High-Speed Silicon Bipolar Transistors,” Proc. of the European Solid-State Dev. Res. Conf, pp. 957–960, Sept. 1996.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Christian Enz
    • 1
  • Yuhua Cheng
    • 1
  1. 1.Conexant Systems Inc.Newport BeachUSA

Personalised recommendations