RF Modelling and characterisation of SOI and bulk MOSFET’s

  • R. Gillon
  • D. Vanhoenacker
  • J.-P. Colinge

Abstract

Shrinking device dimensions and ever higher working frequencies are creating a strong demand for sophisticated models and characterisation methods. New S-parameters de-embedding strategies allow a finer analysis of the measurement results and a more detailled device modelling.

Keywords

Reference Plane Tinuous Line Front Gate MOSFET Model Calibration Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. J. van Wijnen, H. R. Claessen, and E. A. Wolsheimer, “A new straightforward calibration and correction procedure for on-wafer high frequency S-parameters measurements (45 MHz–18 GHz),” in IEEE 1987 Bipolar Circuits and Technology Meeting, 1987.Google Scholar
  2. [2]
    A. Fraser, R. Gleason, and E. W. Strid, “GHz on-silicon-wafer probing calibration methods,” in IEEE 1988 Bipolar Circuits and Technology Meeting, 1988.Google Scholar
  3. [3]
    H. Cho and D. Burk, “A three-step method for the de-embedding of high-frequency s-parameters measurements,” IEEE Trans. on Electron Devices, vol. 38, pp. 1371–1375, June 1991.CrossRefGoogle Scholar
  4. [4]
    C.-H. Kim, C. S. Kim, H. K. Yu, and K. S. Nam, “An isolated-open pattern to de-embed pad parasitics,” IEEE Microwave and Guided Waves Letters, vol. 8, pp. 96–98, Feb. 1998.CrossRefGoogle Scholar
  5. [5]
    D. F. Williams and R. B. Marks, “Reciprocity relations in waveguide junctions,” IEEE Microwave and Guided Waves Letters, vol. 41, pp. 1105–1110, June 1993.Google Scholar
  6. [6]
    H. Heuermann and B. Schiek, “Robust algorithms for txx network analyzer self-calibration procedures,” IEEE Trans. on Instrumentation and Measurement, vol. 43, pp. 18–22, Feb. 1994.CrossRefGoogle Scholar
  7. [7]
    R. B. Marks and D. F. Williams, “A general waveguide circuit theory,” J. Res. of the Natl Inst. Stand. and Technol., vol. 97, pp. 533–562, Sep-Oct 1992.CrossRefGoogle Scholar
  8. [8]
    H. Heuermann and B. Schiek, “Procedures for the determination of the scattering parameters for network analyzer calibration,” IEEE Trans. on Instrumentation and Measurement, vol. 42, pp. 528–531, Apr. 1993.CrossRefGoogle Scholar
  9. [9]
    R. Gillon, J.-P. Raskin, D. Vanhoenacker, and J.-P. Colinge, “Modelling and optimizing the soi mosfet in view of mmic applications,” in 25th European Microwave Conference Digest, (Bologna, Italy), pp. 543–547, Sep. 4–7 1995.CrossRefGoogle Scholar
  10. [10]
    D. F. Williams, R. B. Marks, and A. Davidson, “Comparison of on-wafer calibrations,” in 38th ARFTG Conference Digest, pp. 68–81, Dec. 1991.CrossRefGoogle Scholar
  11. [11]
    J.-P. Raskin, R. Gillon, J. Chen, D. Vanhoenacker, and J.-P. Colinge, “Accurate SOI MOSFET characterization at microwave frequencies for device performance optimisation and analogue modelling,” IEEE Trans. on Electron Devices, May 1998.Google Scholar
  12. [12]
    J.-P. Raskin, A. Viviani, D. Flandre, and J.-P. Colinge, “Substrate crosstalk reduction using SOI technology,” IEEE Trans. on Electron Devices, vol. 44, pp. 2252–2261, Dec. 1997.CrossRefGoogle Scholar
  13. [13]
    M. Bagheri and Y. Tsividis, “A small-signal dc-to-highfrequency nonquasistatic model for the four terminal MOSFET valid in all regions of operation,” IEEE Trans. on Electron Devices, vol. 32, pp. 2383–2391, nov 1985.Google Scholar
  14. [14]
    H.-J. Park, R K. Ko, and C. Hu, “A charge conserving nonquasistatic MOSFET model for SPICE transient analysis,” IEEE Trans. on Computer Aided Design, vol. 10, pp. 629–642, may 1991.Google Scholar
  15. [15]
    R. Gillon, J.-R Raskin, D. Vanhoenacker, J.-R Colinge, and G. Dambrine, “Characterisation of soi mosfets at microwave frequencies,” in Proceedings of the 8th Int. Symp. on SOI Technology and Devices (S. Cristoloveanu, ed.), vol. 97–23, (Paris), pp. 149–154, Electrochemical Society, Inc., Aug. 31- Sep. 5 1997.Google Scholar
  16. [16]
    R. Gillon, Modelling and Characterisation of the SOI MOSFET for MMIC applications. PhD thesis, Université catholique de Louvain, Louvain-la-Neuve, june 1998. <ftp://anonymous@ftp.emic.ucl.ac.be/Pub/Incoming/RGPublic/Thesis>.Google Scholar
  17. [17]
    E. Dubois and E. Robilliart, “Efficient non-quasi-static MOSFET’s model for circuit simulation,” in Proceedings of the IEDM ‘85, pp. 945–948, 1995.Google Scholar
  18. [18]
    B. Irriguez, L. F. Ferreira, B. Gentinne, and D. Flandre, “A physically-based C∞-continuous fully-depleted SOI MOSFET model for analog applications,” IEEE Trans. on Electron Devices, vol. 43, pp. 568–575, Apr. 1996.CrossRefGoogle Scholar
  19. [19]
    C. C. McAndrew, B. K. Bhattacharya, and O. Wing, “A single-piece C∞-continuous MOSFET model including subthreshold conduction,” IEEE Trans. on Electron Devices, vol. 12, pp. 565–567, Oct. 1991.CrossRefGoogle Scholar
  20. [20]
    M. Chan, K. Hui, and P. K. K., “A robust and physical BSIM3 non-quasistatic transient and AC small-signal model for circuit simulation,” IEEE Trans. on Electron Devices, vol. 45, pp. 834–841, 4, 1998.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • R. Gillon
    • 1
  • D. Vanhoenacker
    • 2
  • J.-P. Colinge
    • 3
  1. 1.Alcatel MicroelectronicsOudenaardeBelgium
  2. 2.Laboratoire d’ Hyperfrequences UCLLouvain-la-NeuveBelgium
  3. 3.Dept of Electrical and Computer EngineeringUCDDavisUSA

Personalised recommendations