Introduction

  • Christodoulos A. Floudas
  • Pãnos M. Pardalos
  • Claire S. Adjiman
  • William R. Esposito
  • Zeynep H. Gümüş
  • Stephen T. Harding
  • John L. Klepeis
  • Clifford A. Meyer
  • Carl A. Schweiger
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 33)

Abstract

During the last two decades, a significant growth has taken place in algorithmic and software development of local and global optimization methods for a variety of classes of nonlinear, discrete, and dynamic mathematical problems. These problems include (i) multi-quadratic programming, (ii) bilinear and biconvex, (iii) generalized geometric programming, (iv) general constrained nonlinear optimization, (v) bilevel optimization, (vi) complementarity, (vii) semidefinite programming, (viii) mixed-integer nonlinear optimization, (ix) combinatorial optimization, and (x) optimal control problems. Relative to these advances there have been very limited efforts in establishing a systematic benchmark framework for the evaluation of the algoritms and their implementations (Hock and Schittkowski (1981); Floudas and Pardalos (1990); Bongartz et al. (1995)). A well-designed experimental computational testing framework is of primary importance in identifying the merits of each algorithm and implementation.

Keywords

Test Problem Optimal Control Problem Semidefinite Programming Bilevel Optimization Heat Exchanger Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Christodoulos A. Floudas
    • 1
  • Pãnos M. Pardalos
    • 2
  • Claire S. Adjiman
    • 1
  • William R. Esposito
    • 1
  • Zeynep H. Gümüş
    • 1
  • Stephen T. Harding
    • 1
  • John L. Klepeis
    • 1
  • Clifford A. Meyer
    • 1
  • Carl A. Schweiger
    • 1
  1. 1.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Department of Industrial and Systems EngineeringUniversity of FloridaUSA

Personalised recommendations