Alternative Approaches to Vascular Anastomosis Surgery

  • Paul M. N. Werker
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Irrespective of vessel size or specific technique, manual suturing remains the golden standard for the creation of vascular anastomosis. Successful creation of anastomosis, particularly in small vessels, requires a high level of skill, a long learning curve and a substantial amount of time. In addition, the insertion of transmural stitches, even by experienced hands using atraumatic techniques and fine sutures, causes significant damage to the vessel wall (1,2). Suture placement results in exposure of the subendothelial matrix to the blood stream, setting up a nidus for thrombus formation. The same process occurs at the site of the anastomosis in the case of an end-to-end apposition. These thrombotic processes can potentially result in anastomotic obstruction, especially in small vessels. Because of these limitations, a continuous search for alternative methods to anastomose vessels has been at the forefront of vascular surgery and industry alike. The introduction of loupe and microscopic magnification and the development of microsurgical instruments and techniques (3), however, have improved patency rates of small vessel anastomoses. These progresses in surgery have enabled revascularization procedures of the brain and distal limbs, free tissue transfer, replantation of digits, and coronary bypass surgery.

Keywords

Laser Welding Fibrin Glue Patency Rate Vascular Anastomosis Coronary Bypass Grafting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramos JR, Berger K, Mansfield PB, et al. Histologic fate and endothelial changes of distended and non-distended vein grafts. Ann Surg 1976; 183: 205–228.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhong-Wei C, Dong-Yue Y, Di-Sheng C, eds. Microsurgery. New York: Springer Verlag, New York, 1982, p. 72.Google Scholar
  3. 3.
    Jacobson JH, Suarez EL. Microsurgery in the anastomosis of small vessels. Surg Forum 1960; 11: 243, 244.Google Scholar
  4. 4.
    Murphy JB. Resection of arteries and vein injured in continuity: end-to-end suture: experimental and clinical research. Med Rec 1897; 51: 73.Google Scholar
  5. 5.
    Lauritzen C. A new easier way to anastomose microvessels. Scan J Plast Reconstr Surg 1978; 12: 291–294.CrossRefGoogle Scholar
  6. 6.
    Zhang L, Moskovitz M, Baron DA, Siebert JW. Different types of sleeve anastomosis. J Reconstr Microsurg 1995; 11: 461–465.PubMedCrossRefGoogle Scholar
  7. 7.
    Borst C, Janssen EWL, Tulleken CA, et al. Coronary artery bypass grafting without cardiopulmonary bypass and without interruption of native coronary flow using a novel anastomosis site restraining device. Surgery 1996; 27: 1356–1364.Google Scholar
  8. 8.
    Borst C, Santamore WP, Smedira NG, Bredee H. Minimally invasive coronary artery bypass grafting: on the beating heart and via limited access. Ann Thorac Surg 1997; (Suppl 6)63:S1—S5.Google Scholar
  9. 9.
    Hütl H. Surgical stitching instrument for the suture of the stomach and intestines according to Victor Fischer. Budapest, 1911.Google Scholar
  10. 10.
    Steichen FM, Ravitch MM. History of mechanical devices and instruments for suturing. In: Ravitch MM, Steichen FM, Austen WG, Scott HW Jr, Fonkalsrud EW, Polk HC, eds. Current Problems in Surgery Vol. 3. Yearbook Medical, Chicago and London; 1982, pp. 3: 3–51.Google Scholar
  11. 11.
    von Brucke H. Uber ein neuartiges chirurgisches Nahininstrument. Zentralbl Chir 1935; 62: 1684.Google Scholar
  12. 12.
    Rygg IH, Westengaard E, Fredricksen T. A new method for fixation of prosthetic cardiac valves and closure of the atriotomy with staples. J Cardiovasc Surg 1963; 4: 467.Google Scholar
  13. 13.
    Bertelsen S, Rygg IH. A simple stapling device for vascular surgery. Surg Gyn Obstet 1967; 125: 1087–1090.Google Scholar
  14. 14.
    Androsov PI. New method of surgical treatment of blood vessel lesions. AMA Arch Surg 1956; 73: 902.PubMedCrossRefGoogle Scholar
  15. 15.
    Oka N, Yamada T, Ikeda T, Furuyama M, Shiramizu T, Kusaba A. Construction of internal arteriovenous fistulas for hemodialysis using Inokuchi’s vascular stapler. Jpn J Surg 1982; 12: 262–265.PubMedCrossRefGoogle Scholar
  16. 16.
    Inokuchi K. Stapling device for end-to-side anastomosis of blood vessels. Arch Surg 1961; 82: 337–341.PubMedCrossRefGoogle Scholar
  17. 17.
    Barak JH. Patent filed February 15, 1990, date of publication August 29, 1990. European patent #Ep 0 384 647 Al.Google Scholar
  18. 18.
    Kirsch WM, Zhu YH, Hardesty RA, Chapolini R. A new method for microvascular anastomosis. Am Surg 1992; 58: 722–727.PubMedGoogle Scholar
  19. 19.
    Boeckx W, Darius O, van der Hof B, van Holder C. Scanning electron microscopic analysis of the stapled microvascular anastomosis in the rabbit. Ann Thorac Surg 1997; (Suppl 6)63:S128–S134.Google Scholar
  20. 20.
    Nataf P, Kirsch W, Hill AC, et al. Non-penetrating clips for coronary anastomosis. Ann Thorac Surg 1997;(Suppl 6)63:S135–S137.Google Scholar
  21. 21.
    Carrel A. La technique operatoire des anastomoses vasculaires et la transplantation des visceres. Lyon Med 1902; 98: 859.Google Scholar
  22. 22.
    Nitze M. Kongress in Moskau. Centralbl Chir 1897; 24: 1042.Google Scholar
  23. 23.
    Tuffier M. De l’untubation dans les plaies des gross artères. Bull Acad Natl Med (Paris) 1915; 74: 455.Google Scholar
  24. 24.
    Carrel A. Results of the transplantation of blood vessels, organs and limbs. JAMA 1908; 51: 1662.CrossRefGoogle Scholar
  25. 25.
    Muir ES. A new device for anastomosing blood vessels. Lancet 1914; 34: 211.Google Scholar
  26. 26.
    Payr E. Beitrage zur Technique der Blutgefass und Nrevennaht nebst Mittheilungen uber die Verwendung eines resorbirbaren Metalles in de Chirurgie. Arch Klin Chir 1900; 62: 67–93.Google Scholar
  27. 27.
    Carter EL, Roth EJ. Direct non-suture coronary anastomoses in the dog. Ann Surg 1958; 148: 212–218.PubMedCrossRefGoogle Scholar
  28. 28.
    Rohman M, Goetz RH, Dee R. Double coronary artery internal mammary artery anastomoses: tantalum ring technique. Surg Forum 1969; 11: 236, 237.Google Scholar
  29. 29.
    Ratan RS, Leon M, Lovette JB, Levowitz BS, Magovern GJ, Kent EM. Modified non-suture anastomosis of coronary artery and internal mammary artery in dogs. Surg Forum 1960; 11: 239–241.PubMedGoogle Scholar
  30. 30.
    Haller JD, Kripke DC, Rosenak SS, Roberts DR, Rohman M. Long-term results of small vessel anastomoses with a ring technique. Ann Surg 1965; 161: 67–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Payr E. Zur Frage der circularen Vereinigung von Blutgefasse mit resorbirbaren Prothesen. Arch Klin Chir 1904; 72: 32–54.Google Scholar
  32. 32.
    Landon LH. A simplified method of direct blood transfusion with self retaining tubes. JAMA 1913; 61: 490.CrossRefGoogle Scholar
  33. 33.
    Smith S. The soluble rod as an aid to vascular anastomosis. Arch Surg 1940; 41: 1004–1007.CrossRefGoogle Scholar
  34. 34.
    Donetski DA. A new method of a circular vascular suture. Eksperimetn Al’naia Khirurgiia (Moscow) 1956; 1: 53–59.Google Scholar
  35. 35.
    Tibbs GJ, Leslie WG. Arterial replacement with minimal interruption of the blood flow. Lancet 1958; 1: 292–294.PubMedCrossRefGoogle Scholar
  36. 36.
    Holt GP, Lewis FJ. A new technique for end-to-end anastomosis of small arteries. Surg Forum 1960; 11: 242–243.PubMedGoogle Scholar
  37. 37.
    Nakayama K, Tamiya T, Yamamoto K, Akimoto S. A simple new aparatus for small vessel anastomosis. Surgery 1962; 52: 918–923.PubMedGoogle Scholar
  38. 38.
    Östrup LT. Anastomosis of small veins with suture or Nakayama’s apparatus. Scand J Plast Reconstr Surg 1976; 10: 9–17.PubMedGoogle Scholar
  39. 39.
    Yamagata S, Handa H, Taki W, Yonekawa Y, Ikada Y, Iwata H. Experimental nonsuture microvascular anastomosis using a soluble PVA tube and plastic adhesive. J Microsurg 1979; 1: 208–215.PubMedCrossRefGoogle Scholar
  40. 40.
    Daniel RK, Olding M. An absorbable anastomotic device for microvascular surgery: clinical applications. Plast Reconstr Surg 1984; 74: 337–342.PubMedCrossRefGoogle Scholar
  41. 41.
    Moskovitz MJ, Bass L, Zhang L, Siebert JW. Microvascular anastomoses utilizing new intravascular stents. Ann Plast Surg 1994; 32: 612–618.PubMedCrossRefGoogle Scholar
  42. 42.
    Östrup LT, Berggren A. The Unilink instrument system for fast and safe microvascular anastomosis. Ann Plast Surg 1986; 17: 521–525.PubMedCrossRefGoogle Scholar
  43. 43.
    Berggren A, Ostrup LT, Ragnarsson R. Clinical experience with the Unilink/3M precise anastomotic device. Scan J Plast Reconstr Hand Surg 1993; 27: 35–39.CrossRefGoogle Scholar
  44. 44.
    Ragnarsson R, Berggren A, Ostrup LT. Microvenous end-to-side anastomosis: an experimental study comparing the Unilink system and sutures. J Reconstr Microsurg 1989; 5: 217–224.PubMedCrossRefGoogle Scholar
  45. 45.
    Ragnarsson R, Berggren A, Ostrup LT, Gilbert RW. Arterial end-to-side anastomosis with the Unilink system. Ann Plast Surg 1989; 22: 405–415.PubMedCrossRefGoogle Scholar
  46. 46.
    Lerner R, Binur NS. Current status of surgical adhesives. J Surg Res 1990; 48: 165–181.PubMedCrossRefGoogle Scholar
  47. 47.
    Bergel S. Uber Wirkungen des Fibrins. Dtsch Med Wochenschr 1909; 35: 633.CrossRefGoogle Scholar
  48. 48.
    Grey EG. Fibrin as a hemostatic in cerebral surgery. Surg Gynecol Obstr 1915; 21: 452.Google Scholar
  49. 49.
    Harvey SC. The use of fibrin papers and forms in surgery. Boston Med Surg J 1916; 174: 658.CrossRefGoogle Scholar
  50. 50.
    Cronkite EP, Lozner EL, Deaver JM. Use of thrombin and fibrinogen in skin grafting. JAMA 1944; 124: 976.CrossRefGoogle Scholar
  51. 51.
    Matras H, Dinges HP, Lassman H, Mamoli B. Zur nahtlosen interfaszikularen Nerventransplantation im Tierexperiment. Wien Med Wochenschr 1972; 122: 517–523.PubMedGoogle Scholar
  52. 52.
    Kuderna H, Matras H. Die klinische Anwendung der Klebung von Nreveanastomosen bei der Rekonstruktion verletzer peripherer Nerven. Wien Med Wochenschr 1975; 87: 495.Google Scholar
  53. 53.
    Matras H, Chiari F, Fletter G, et al. Zur Klebung von Microgefi 3anastomosen. Proceedings,13th Annual Meeting Dtsch Ges f Plast Wiederherstellungschirurgie. Stuttgart, Thieme, 1977, p. 357S.Google Scholar
  54. 54.
    Baxter TJ, O’Brien B, Henderson PN, Bennet RC. The histopathology of small vessels following microvascular repair. Br J Surg 1972; 59: 617–622.PubMedCrossRefGoogle Scholar
  55. 55.
    Kletter G, Matras H, Dinges HP. Zur partiellen Klebung von Microgefabanastomosen im intrakraniellen Bereich. Wien Klin Wochenschr 1978; 90: 415–419.PubMedGoogle Scholar
  56. 56.
    Aksik IA, Kikut RP, Apshkalne DL. Extraintracranial anastomosis performed by means of biological gluing materials: experimental and clinical study. Microsurg 1986; 7: 2–8.CrossRefGoogle Scholar
  57. 57.
    Moskovitz MJ, Bass L, Zhani L, Siebert JW. Microvascular anastomosis utilizing new intravascular stents. Ann Plast Surg 1994; 32: 612–618.PubMedCrossRefGoogle Scholar
  58. 58.
    Dowbak GM, Rohrich RJ, Robinson JB, Peden E. Effectiveness of a new non-thrombogenic bioadhesive in microvascular anastomoses. J Reconstr Microsurg 1994; 10: 383–386.PubMedCrossRefGoogle Scholar
  59. 59.
    Nathan HS. Nonsuture closure of arterial incisions using a rapidly polymerizing adhesive. Ann Surg 1960; 152: 648.PubMedCrossRefGoogle Scholar
  60. 60.
    Vinters HV, Galil KA, Lundie MJ, Kaufman JCE. The histotoxicity of cyanoacrylates. Neuroradiology 1985; 27: 279–291.PubMedCrossRefGoogle Scholar
  61. 61.
    Green AR, Milling MAP, Green RT. Butylcyanoacrylate adhesives in microvascular surgery: an experimental pilot study. J Reconstr Microsurg 1986; 2: 103–105.PubMedCrossRefGoogle Scholar
  62. 62.
    Weissberg D, Goetz RH. Necrosis of arterial wall following application of methyl-2cyanoacrylate. Surg Gynecol Obstr 1964; 119: 1248.Google Scholar
  63. 63.
    Woodward SC, Hermann JB, Cameron JL, et al. Histotoxicity of cyanoacrylate tissue adhesive in the rat. Ann Surg 1965; 162: 113.PubMedCrossRefGoogle Scholar
  64. 64.
    Dumanian GA, Dacombe W, Hong C, et al. A new photopolymerizable blood vessel glue that seals vessel anastomoses without augmenting thrombogenicity. Plast Reconstr Surg 1995; 95: 901–907.PubMedGoogle Scholar
  65. 65.
    Pathak CP, Sawhney AS, Hubbell JA. Rapid photopolymerization of immunoprotective gels in contact with cells and tissue. J Am Chem Soc 1992; 114: 8311.CrossRefGoogle Scholar
  66. 66.
    Jain KK, Gorisch W. Repair of small blood vessels with the Neodymium-YAG laser: a preliminary report. Surgery 1979; 85: 684–688.PubMedGoogle Scholar
  67. 67.
    Gomes OM, Macruz R, Armelin, et al. Vascular anastomosis by argon laser beam. Texas Heart Inst J 1981; 10: 145.Google Scholar
  68. 68.
    White RA, White GH, Fujitani RM, et al. Initial human evaluation of argon laser-assisted vascular anastomoses. J Vasc Surg 1987; 9: 542–547.Google Scholar
  69. 69.
    Okada M, Simizu K, Ikuta H, Horii H, Nakamura K. An alternative method of vascular anastomosis by laser: experimental and clinical study. Lasers Surg Med 1987; 7: 240–248.PubMedCrossRefGoogle Scholar
  70. 70.
    McCarthy WJ, Hartz RS, Yao JS, et al. Vacular anastomoses with laser energy, J Vasc Surg 1986; 2: 32–41.Google Scholar
  71. 71.
    Bass LS, Moazami N, Pocsidio J, et al. Changes in type I collagen following laser welding. Lasers Surg Med 1992; 12: 500–505.PubMedCrossRefGoogle Scholar
  72. 72.
    Serure A, Whithers EH, Thomsen S, Morris J. Comparison of carbon dioxide laser-assisted microvascular anastomosis and conventional microvascular sutured anastomosis. Surg Forum 1983; 34: 634.Google Scholar
  73. 73.
    Kopchok GE, White RA, White GH, et al. CO2 and argon laser welding: acute histologic and thermodynamic comparison. Lasers Surg Med 1988; 8: 584–588.PubMedCrossRefGoogle Scholar
  74. 74.
    Danielsen CC. Precision method to determine denaturation temperature of collagen using ultraviolet difference spectroscopy. Coll Rlat Res 1982; 2: 143.CrossRefGoogle Scholar
  75. 75.
    Epstein M, Colly BC. Electron microscopic study of dosimetry for microvascular tissue welding. Laser Surg Med 1986; 6: 202.Google Scholar
  76. 76.
    Frazier OH, Painvin GA, Morris JR, Thomsen S, Neblett CR. Laser-assisted microvascular anstomoses: angiographie and anastomopathologic studies on growing microvascular anastomoses: preliminary report. Surgery 1985; 97: 585–590.PubMedGoogle Scholar
  77. 77.
    Sartorius CJ, Shapiro SA, Campbell RL, Klatte EC, Clark SA. Experimental laser-assisted end-to-side microvascular anastomosis. Microsurgery 1986; 7: 79–83.PubMedCrossRefGoogle Scholar
  78. 78.
    White RA, Kopchok GE, Donayre C. Mechanism of tissue fusion in argon laser-welded vein-artery anastomoses. Lasers Surg Med 1988; 8: 83–85.PubMedCrossRefGoogle Scholar
  79. 79.
    Chikamatsu E, Sakurai T, Nishikimi N, Yano T, Nimura Y. Comparison of laser welding, interrupted sutures, and continuous sutures in growing vascular anastomoses. Lasers Surg Med 1995; 16: 34–40.PubMedCrossRefGoogle Scholar
  80. 80.
    Unno N, Sakaguchi S, Koyano K. Microvascular anastomosis using a new diode laser system with a contact probe. Lasers Surg Med 1989; 9: 160–168.PubMedCrossRefGoogle Scholar
  81. 81.
    Godlewski G, Rouy S, Tang J, Dauzat M, Chambettaz F, Salathe RP. Scanning electron-microscopy of microarterial anastomoses with a diode laser: comparison with conventional manual suture. J Reconstr Microsurg 1995; 11: 37–42.PubMedCrossRefGoogle Scholar
  82. 82.
    Oz MC, Bass LS, Chuck RS, et al. Strength of laser vascular fusion: preliminary observations on the role of thrombus. Lasers Surg Med 1990; 10: 393–395.PubMedCrossRefGoogle Scholar
  83. 83.
    Godlewski G, Frapier JM, DeBalman B, et al. Diode laser and microvascular carotid anastomosis: a preliminary study. Laser Med Sci 1991; 8: 33.CrossRefGoogle Scholar
  84. 84.
    Ludington LG, Kafrouni G, Peterson MH, Verska JJ, Mulder A, Brewer LA III. Technique for using soft, flexible stents in aortocoronary vein bypass operations. Ann Thorac Surg 1976; 21: 328–332.PubMedCrossRefGoogle Scholar
  85. 85.
    Tulleken CAF, Verdaasdonk RM, Mansvelt Beck HJ. Nonocclussive excimer laser assisted end-to-side anastomosis. Ann Thorac Surg 1997; 63: S138–S142.PubMedCrossRefGoogle Scholar
  86. 86.
    Heijmen RH, Borst C, van Dalen R, Gruendeman PF, Verlaan CWJ. Temporary luminal arteriotomy seal for bypass grafting. Ann Thorac Surg 1998; 65: 1093–1099.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Paul M. N. Werker

There are no affiliations available

Personalised recommendations