Skip to main content

Bin Packing Approximation Algorithms: Combinatorial Analysis

  • Chapter

Abstract

In the classical version of the bin packing problem one is given a list L = (a 1,...,a n ) of items (or elements) and an infinite supply of bins with capacity C. A function s(a i ) gives the size of item a i , and satisfies 0 < s(a i )≤C, 1 ≤ in. The problem is to pack the items into a minimum number of bins under the constraint that the sum of the sizes of the items in each bin is no greater than C. In simpler terms, a set of numbers is to be partitioned into a minimum number of blocks subject to a sum constraint common to each block. We use the bin packing terminology, as it eases considerably the problem of describing and analyzing algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Adler, P. B. Gibbons, and Y. Matias. Scheduling space sharing for internet advertising. Technical report, Bell Labs, Lucent Technologies, Murray Hill, NJ 07974, 1997.

    Google Scholar 

  2. S. Albers. Better bounds for on-line scheduling. In Proc. 29th Annual ACM Symp. Theory of Comput., pages 130–139, 1997.

    Google Scholar 

  3. R. J. Anderson, E. W. Mayr, and M. K. Warmuth. Parallel approximation algorithms for bin packing. Inf. and Comput., 82: 262–277, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. F. Assmann Problems in Discrete Applied Mathematics. PhD thesis, Mathematics Department MIT, Cambridge, MA, 1983.

    Google Scholar 

  5. S. F. Assmann, D. S. Johnson, D. J. Kleitman, and J. Y.-T. Leung. On a dual version of the one-dimensional bin packing problem. J. Algorithms, 5: 502–525, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. S. Baker. A new proof for the first-fit decreasing bin-packing algorithm. J. Algorithms, 6: 49–70, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. S. Baker, D. J. Brown, and H. P. Katseff. A 5/4 algorithm for two-dimensional packing. J. Algorithms, 2: 348–368, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. S. Baker and E. G. Coffman, Jr. A tight asymptotic bound for nextfit-decreasing bin-packing. SIAM J. Algebraic Discr. Meth.,2(2):147152, 1981.

    Google Scholar 

  9. Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient scheduling problem. In Proc. 24th Annual ACM Symp. Theory of Comput., pages 51–58, Victoria, Canada, 1992.

    Google Scholar 

  10. Y. Bartal, H. Karloff, and Y. Rabani. A better lower bound for on-line scheduling. Inform. Process. Lett., 50: 113–116, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Bèkèsi, G. Galambos, and H. Kellerer. A 5/4 linear time bin packing algorithm. Technical Report OR-97–2, Teachers Trainer College, Szeged, Hungary, 1997.

    Google Scholar 

  12. J. Blazewicz and K. Ecker. A linear time algorithm for restricted bin packing and scheduling problems. Oper. Res. Lett., 2: 80–83, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. J. Brown. A lower bound for on-line one-dimensional bin-packing algorithms. Technical Report R-864, University of Illinois, Coordinated sc. lab., Urbana, 1979.

    Google Scholar 

  14. R. E. Burkard and G. Zhang. Bounded space on-line variable-sized bin packing. Acta Cybern., 13: 63–76, 1997.

    MathSciNet  MATH  Google Scholar 

  15. L. M. A. Chan, D. Simchi-Levi, and J. Bramel. Worst-case analyses, linear programming, and the bin-packing problem. Unpublished manuscript, 1994.

    Google Scholar 

  16. A. K. Chandra, D. S. Hirschler, and C. K. Wong. Bin packing with geometric constraints in computer network design. Oper. Res., 26: 760772, 1978.

    Google Scholar 

  17. B. Chandra. Does randomization help in on-line bin packing? Inform. Process. Lett., 43: 15–19, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Chen, A. van Vliet, and G.J. Woeginger. New lower and upper bounds for on-line scheduling. Oper. Res. Lett., 16: 221–230, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  19. E. G. Coffman, Jr. An introduction to combinatorial models of dynamic storage allocation. SIAM Rev., 25 (3): 311–325, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. G. Coffman, Jr., M. Garey, and D. S. Johnson. Bin packing with divisible item sizes. J. Complexity, 3: 405–428, 1987.

    Google Scholar 

  21. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. An application of bin-packing to multiprocessor scheduling. SIAM J. Comput., 7 (1): 117, 1978.

    Google Scholar 

  22. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for bin-packing: An updated survey. In G. Ausiello, M. Lucertini, and P. Serafini, editors, Algorithm Design for Computer System Design, pages 49–106. Springer Verlag, Wien, 1984.

    Google Scholar 

  23. E. G. Coffman, Jr., M. R. Carey, and D. S. Johnson. Approximation algorithms for bin packing. In D. S. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, pages 46–93. PWS Publ. Company, 1997.

    Google Scholar 

  24. E. G. Coffman, Jr. and J. Y.-T. Leung. Combinatorial analysis of an efficient algorithm for processor and storage allocation. SIAM J. Comput., 8 (2): 202–217, 1979.

    MathSciNet  MATH  Google Scholar 

  25. E. G. Coffman, Jr., J. Y.-T. Leung, and D. W. Ting. Bin packing: Maximizing the number of pieces packed. Acta Inform., 9: 263–271, 1978.

    MathSciNet  MATH  Google Scholar 

  26. E. G. Coffman, Jr. and G. S. Lueker. Probabilistic analysis of packing and partitioning algorithms. John Wiley & Sons, New York, 1991.

    Google Scholar 

  27. J. Csirik. An on-line algorithm for variable-sized bin packing. Acta Inform., 26: 697–709, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Csirik. The parametric behaviour of the first fit decreasing bin-packing algorithm. J. Algorithms, 15: 1–28, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Csirik, G. Galambos, and G. Turan. Some results on bin-packing. In Proc. EURO VI Conf., page 52, Vienna, Austria, 1983.

    Google Scholar 

  30. J. Csirik and B. Imreh. On the worst-case performance of the next-k-fit bin-packing heuristic. Acta Cybern., 9: 89–105, 1989.

    MathSciNet  MATH  Google Scholar 

  31. J. Csirik and D. S. Johnson. Bounded space on-line bin-packing: best is better than first. In Proc. 2nd Annual ACM-SIAM Symp. Discr. Algorithms, pages 309–319, Philadelphia, 1991.

    Google Scholar 

  32. J. Csirik and V. Totik. Online algorithms for a dual version of bin paking. Discr. Appl. Math., 21: 163–167, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Csirik and G. J. Woeginger. Online packing and covering problems. Technical Report No. 83, T.U. Graz (Austria), 1996.

    Google Scholar 

  34. M. Dror. Private communication.

    Google Scholar 

  35. U. Faigle, W. Kern, and G. Turan. On the performance of on-line algorithms for particular problems. Acta Cybern., 9: 107–119, 1989.

    MathSciNet  MATH  Google Scholar 

  36. W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + e in linear time. Combinatorica, 1 (4): 349–355, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. C. Fisher. Next-fit packs a list and its reverse into the same number of bins. Oper. Res. Lett., 7 (6): 291–293, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  38. D. K. Friesen. Tighter bounds for the multifit processor scheduling algorithm. SIAM J. Comput., 13 (1): 170–181, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  39. D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM J. Comput., 15 (1): 222–230, 1986.

    Article  MATH  Google Scholar 

  40. D. K. Friesen and M. A. Langston. Analysis of a compound bin packing algorithm. SIAM J. Discr. Math., 4 (1): 61–79, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Galambos. A new heuristic for the classical bin-packing problem. Technical Report 82, Institute fuer Mathematik, Augsburg, 1985.

    Google Scholar 

  42. G. Galambos. Parametric lower bound for on-line bin-packing. SIAM J. Algebraic Discr. Meth., 7 (3): 362–367, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Galambos and J. B. G. Frenk. A simple proof of Liang’s lower bound for on-line bin packing and the extension to the parametric case. Discr. Appl. Math., 41: 173–178, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Galambos and G. J. Woeginger. An on-line scheduling heuristic with better worst case ratio than graham’s list scheduling. SIAM J. Comput., 22 (2): 345–355, 1993.

    Article  MathSciNet  Google Scholar 

  45. G. Galambos and G. J. Woeginger. Repacking helps in bounded space on-line bin-packing. Computing, 49: 329–338, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  46. G. Galambos and G. J. Woeginger. On-line bin packing — a restricted survey. Z. Oper. Res., 42: 25–45, 1995.

    MathSciNet  MATH  Google Scholar 

  47. G. Gambosi, A. Postiglione, and M. Talamo. New algorithms for online bin packing. In R. Petreschi, G. Ausiello, and D. P. Bovet, editors, Algorithms and Complexity, pages 44–59. World Scientific, Singapore, 1990.

    Google Scholar 

  48. M. R. Garey, R. L. Graham, D. S. Johnson, and A. C.-C. Yao. Resource constrained scheduling as generalized bin packing. J. Combin. Theory, Ser. A, 21: 257–298, 1976.

    Google Scholar 

  49. M. R. Garey, R. L. Graham, and J. D. Ullmann. Worst-case analysis of memory allocation algorithms. In Proc. 4th Annual ACM Symp. Theory of Comput., pages 143–150, New York, 1972.

    Google Scholar 

  50. M. R. Garey and D. S. Johnson. Computers and intractability (A Guide to the theory of NP-Completeness. W. H. Freeman and Company, San Francisco, 1979.

    Google Scholar 

  51. M. R. Carey and D. S. Johnson. Approximation algorithm for bin-packing problems: a survey. In G. Ausiello and M. Lucertini, editors, Analysis and Design of Algorithm in Combinatorial Optimization, pages 147–172. Springer Verlag, New York, 1981.

    Google Scholar 

  52. M. R. Garey and D. S. Johnson. A 71/60 theorem for bin packing. J. Complexity, 1: 65–106, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  53. P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock problem. Oper. Res., 9: 849–859, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  54. P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting stock problem–(Part II). Oper. Res., 11: 863–888, 1963.

    Article  MATH  Google Scholar 

  55. S. W. Golomb. On certain nonlinear recurring sequences. American Math. Monthly, 70: 403–405, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  56. R. L. Graham. Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J., 45 (45): 1563–1581, 1966.

    Google Scholar 

  57. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math., 17 (2): 263–269, 1969.

    Article  Google Scholar 

  58. R. L. Graham. Bounds on multiprocessing anomalies and related packing algorithms. In Proc. 1972 Spring Joint Computer Conf.,pages 205–217, Montvale NJ, 1972. AFIPS Press.

    Google Scholar 

  59. E. F. Grove. Online bin packing with lookahead. Unpublished manuscript, 1994.

    Google Scholar 

  60. L. A. Hall. Approximation algorithms for scheduling. In D. S. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, pages 1–45. PWS Publ. Company, 1997.

    Google Scholar 

  61. D. Hochbaum and D. Shmoys. Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM, 34: 144–162, 1987.

    Article  MathSciNet  Google Scholar 

  62. D. S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publ. Company, Boston, 1997.

    Google Scholar 

  63. D. S. Hochbaum. Various notions of approximation: Good, better, best, and more. In D. S. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, pages 389–391. PWS Publ. Company, 1997.

    Google Scholar 

  64. M. Hofri. Analysis of Algorithms. Oxford University Press, New York, 1995.

    MATH  Google Scholar 

  65. Z. Ivkovié and E. Lloyd. Fully dynamic algorithms for bin packing: being myopic helps. In Proc. 1st European Symp. on Algorithms, volume 726 of Lecture Notes in Computer Science, pages 224–235. Springer Verlag, New York, 1993.

    Google Scholar 

  66. Z. Ivkovié and E. Lloyd. A fundamental restriction on fully dynamic maintenance of bin packing. Inf. Proc. Lett., 59 (4): 229–232, 1996.

    Article  Google Scholar 

  67. Z. Ivkovié and E. Lloyd. Partially dynamic bin packing can be solved within 1 + e in (amortized) polylogarithmic time. Inf. Proc. Lett., 63 (1): 45–50, 1997.

    Article  Google Scholar 

  68. D. S. Johnson. Fast allocation algorithms. In Proc. 13th IEEE Symp. Switching and Automata Theory, pages 144–154, New York, 1972.

    Google Scholar 

  69. D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge, MA, 1973.

    Google Scholar 

  70. D. S. Johnson. Fast algorithms for bin packing. J. Comput. Syst. Sci., 8: 272–314, 1974.

    Article  MATH  Google Scholar 

  71. D. S. Johnson. The NP-completeness column: An ongoing guide. J. Algorithms, 3: 89–99, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  72. D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput., 3: 256–278, 1974.

    Article  MathSciNet  Google Scholar 

  73. D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient scheduling problem. J. Algorithms, 20: 400–430, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  74. N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional bin-packing problem. In Proc. 23rd Annual IEEE Symp. Found. Comput. Sci., pages 312–320, 1982.

    Google Scholar 

  75. H. Kellerer and U. Pferschy. An on-line alorithm for cardinality constrained bin packing problem. Technical report, Universitaet Graz und TU Graz, 1997.

    Google Scholar 

  76. C. Kenyon. Best-fit bin-packing with random order. In Proc. 7th Annual ACM-SIAM Symp. Discr. Algorithms, pages 359–364, Philadelphia, 1996.

    Google Scholar 

  77. S. Khanna. Private communication.

    Google Scholar 

  78. N. G. Kinnersley and M. A. Langston. On-line variable sized bin packing. Discr. Appl. Math., 22: 143–148, 1988.

    Article  MathSciNet  Google Scholar 

  79. K. L. Krause, Y. Y. Shen, and H. D. Schwetman. Analysis of several task-scheduling algorithms for a model of multiprogramming computer systems. J. ACM, 22 (4): 522–550, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  80. M. A. Langston. Improved 0/1 interchanged scheduling. BIT, 22: 28 2290, 1982.

    Google Scholar 

  81. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and scheduling: algorithms and complexity. In S. C. Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, editors, Logistics of production and inventory,volume 4 of Handbooks in operations research and management science,pages 445–522. North-Holland, Amsterdam, 1993.

    Google Scholar 

  82. C. C. Lee and D. T. Lee. A new algorithm for on-line bin-packing. Technical Report 83–03-FC-02, Department of Electrical Engineering and computer Science Northwestern University, Evanston, IL, 1983.

    Google Scholar 

  83. C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. J. ACM, 32 (3): 562–572, 1985.

    Article  MATH  Google Scholar 

  84. H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Math. Oper. Res., 8 (4): 538–548, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  85. F. M. Liang. A lower bound for on-line bin packing. Inform. Process. Lett., 10 (2): 76–79, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  86. W. Mao. Best-k-fit bin packing. Computing, 50: 265–270, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  87. W. Mao. Tight worst-case performance bounds for next-k-fit bin packing. SIAM J. Comput.,22(1):46–56, 1993

    Google Scholar 

  88. C. U. Martel. A linear time bin-packing algorithm. Oper. Res. Lett., 4 (4): 189–192, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  89. F. D. Murgolo. An efficient approximation scheme for variable-sized bin packing. SIAM J. Comput.16(1):149–161 1987.

    Google Scholar 

  90. F. D. Murgolo. Anomalous behaviour in bin packing algorithms. Discr. Appl. Math. 21:229–243 1988.

    Google Scholar 

  91. P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. On-line bin packing in linear time. J. Algorithms, 10: 305–326, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  92. M. B. Richey. Improved bounds for harmonic-based bin packing algorithms.Discr. Appl. Math. 34:203–227 1991.

    Google Scholar 

  93. S. Sahni. Algorithms for scheduling independent tasks. J. ACM 23:116–127 1976.

    Google Scholar 

  94. H. E. Salzer. The approximation of number as sums of reciprocals. American Math. Monthly 54:135–142 1947.

    Google Scholar 

  95. D. Simchi-Levi. New worst-case results for the bin packing problem. Naval Res. Log. Quart. 41:579–585 1994.

    Google Scholar 

  96. A. van Vliet. An improved lower bound for on-line bin packing algorithms. Inform. Process. Lett., 43: 277–284, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  97. A. van Vliet. Lower and Upper Bounds for On-line Bin Packing and Scheduling Heuristic. PhD thesis, Erasmus University, Rotterdam, 1995.

    Google Scholar 

  98. A. van Vliet. On the asymptotic worst case behavoir of harmonic fit. J. Algorithms 20:113–136 1996.

    Google Scholar 

  99. T. S. Wee and M. J. Magazine. Assembly line balancing as generalized bin packing. Oper. Res. Lett.,1(2):56–58, 1982.

    Google Scholar 

  100. G. J. Woeginger. Improved space for bounded-space on-line bin-packing. SIAM J. Discr. Math. 6:575–581 1993.

    Google Scholar 

  101. K. Xu. A bin-packing problem with Item Sizes in the Interval (0, a] for G 2. PhD thesis, Chinese Academy of Sciences, Institute of Applied Mathematics, Beijing, China, 1993.

    Google Scholar 

  102. A. C.-C. Yao. New algorithms for bin packing. J. ACM 27(2):207–227 1980.

    Google Scholar 

  103. M. Yue. On the exact upper bound for the multifit processor scheduling algorithm. Ann. Oper. Res., 24: 233–259, 1991.

    Article  Google Scholar 

  104. M. Yue. A simple proof of the inequality FFD(L) OPT (L) + 1 dL for the FFD bin packing algorithm. Acta Math. App. Sinica,7(4):321331, 1991.

    Google Scholar 

  105. G. Zhang. Tight worst-case performance bound for AFBk. Technical Report 15, Inst. of Applied Mathematics. Academia Sinica, Beijng, China, 1994.

    Google Scholar 

  106. G. Zhang. Worst-case analysis of the FFH algorithm for on-line variable-sized bin paking. Computing, 56: 165–172, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  107. G. Zhang. A new version of on-line variable-sized bin packing. Discr. Appl. Math., 72: 193–197, 1997.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coffman, E.G., Galambos, G., Martello, S., Vigo, D. (1999). Bin Packing Approximation Algorithms: Combinatorial Analysis. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3023-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3023-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4813-7

  • Online ISBN: 978-1-4757-3023-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics