The Maximum Clique Problem

  • Immanuel M. Bomze
  • Marco Budinich
  • Panos M. Pardalos
  • Marcello Pelillo


The maximum clique problem is a classical problem in combinatorial optimization which finds important applications in different domains. In this paper we try to give a survey of results concerning algorithms, complexity, and applications of this problem, and also provide an updated bibliography. Of course, we build upon precursory works with similar goals [39, 232, 266].


Tabu Search Random Graph Vertex Cover Maximum Clique Chordal Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines, J. Wiley & Sons, Chichester, UK, 1989.Google Scholar
  2. [2]
    E. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization, J. Wiley & Sons, Chichester, UK, 1997.Google Scholar
  3. [3]
    F. Abbattista, F. Bellifemmine and D. Dalbis, The Scout algorithm applied to the maximum clique problem, in Advances in Soft Computing—Engineering and Design, Springer, Berlin, 1998.Google Scholar
  4. [4]
    J. Abello, P.M. Pardalos and M.G.C. Resende, On maximum clique problems in very large graphs, in External Memory Algorithms, DI-MACS Series, AMS (J. Abello and J. Vitter, Editors ) 1999.Google Scholar
  5. [5]
    L.M. Adleman, Molecular computation of solutions to combinatorial optimization, Science, Vol. 266: 1021–1024, 1994.CrossRefGoogle Scholar
  6. [6]
    F. Alizadeh, A sublinear-time randomized parallel algorithm for the maximum clique problem in perfect graphs, in: A. Aggarwal (ed.), Discrete Algorithms, Proc. 2nd ACM-SIAM Symposium, Vol. 2: 188194, 1991.Google Scholar
  7. [7]
    N. Alon, U. Feige, A. Wigderson and D. Zuckerman, Derandomized graph products, Comput. Complex., Vol. 5: 60–75, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    E.A. Akkoyunlu, The enumeration of maximal cliques of large graphs, SIAM J. Comput., Vol. 2: 1–6, 1973.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    N. Alon, L. Babai and A. Itai, A fast and simple randomized parallel algorithm for the maximal independent set problem, J. Algorithms, Vol. 7: 567–583, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    N. Alon, M. Krivelevich and B. Sudakov, Finding a large hidden clique in a random graph, in: Proc. SODA ‘88—Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco CA, January 2527, 1998.Google Scholar
  11. [11]
    A.P. Ambler, H.G. Barrow, C.M. Brown, R.M. Burstall and R.J. Popplestone, A versatile computer-controlled assembly system, in Proc. 3rd Int. J. Conf. Artif. Intell.: 298–307, 1973.Google Scholar
  12. [12]
    A.T. Amin and S.L. Hakimi, Upper bounds on the order of a clique of a graph, SIAM J. Appl. Math., Vol. 22: 569–573, 1972.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof verification and hardness of approximation problems, Proc. 33rd Ann. Symp. Found. Computer Sci.: 14–23, 1992.Google Scholar
  14. [14]
    S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, Proc. 33rd Ann. Symp. Found. Computer Sci.: 2–13, 1992.Google Scholar
  15. [15]
    J.G. Auguston and J. Minker, An analysis of some graph theoretical cluster techniques, J. ACM, Vol. 17: 571–588, 1970.CrossRefGoogle Scholar
  16. [16]
    G. Ausiello, P. Crescenzi and M. Protasi, Approximation solution of NP optimization problems, Theor. Comput. Sci., Vol. 150: 1–55, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    G. Avondo-Bodeno, Economic Applications of the Theory of Graphs, Gordon and Breach Science Publishers, New York, 1962.Google Scholar
  18. [18]
    S.M. Baas, M.C. Bonvanie and A.J. Verschoor, A relaxation method for the set packing problem using polyhedron characteristic, Technical Report 699, University of Twente, Netherlands, 1988.Google Scholar
  19. [19]
    L. Babel, Finding maximum cliques in arbitrary and in special graphs, Computing, Vol. 46: 321–341, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    L. Babel, A fast algorithm for the maximum weight clique problem, Computing, Vol. 52: 31–38, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    L. Babel and G. Tinhofer, A branch and bound algorithm for the maximum clique problem, ZOR-Methods and Models of Operations Research, Vol. 34: 207–217, 1990.MathSciNetzbMATHGoogle Scholar
  22. [22]
    T. Bäck and S. Khuri, An evolutionary heuristic for the maximum independent set problem, Proc. 1st IEEE Conf. Evolutionary Comput.: 531–535, 1994.Google Scholar
  23. [23]
    E. Balas, A fast algorithm for finding an edge-maximal subgraph with a TR-formative coloring, Discr, Appl. Math., Vol. 15: 123–134, 1986.MathSciNetzbMATHGoogle Scholar
  24. [24]
    E. Balas, S. Ceria, G. Corneujols and G. Pataki, Polyhedral methods for the maximum clique problem, in [189]: 11–28, 1996.Google Scholar
  25. [25]
    E. Balas, V. Chvâtal and J. Nesetril, On the maximum weight clique problem, Math. Oper. Res., Vol. 12: 522–535, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    E. Balas and W. Niehaus, Finding large cliques in arbitrary graphs by bipartite matching, in [189]: 29–51, 1996.Google Scholar
  27. [27]
    E. Balas and H. Samuelsson, A Node Covering Algorithm, Naval Research Logistics Quarterly, Vol. 24: 213–233, 1977.MathSciNetzbMATHGoogle Scholar
  28. [28]
    E. Balas and P. Toth, Branch and bound methods, In: E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (Eds.), The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, J. Wiley & Sons, Chichester, UK: 361–403, 1985.Google Scholar
  29. [29]
    E. Balas and J. Xue, Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs, SIAM J. Comput., Vol. 2: 209–221, 1991. “Addendum,” SIAM J. Comput., Vol. 21: 1000, 1992.Google Scholar
  30. [30]
    E. Balas and J. Xue, Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring, Algorithmica Vol. 15: 397–412, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    E. Balas and C.S. Yu, Finding a maximum clique in an arbitrary graph, SIAM J. Comput., Vol. 14: 1054–1068, 1986.Google Scholar
  32. [32]
    E. Balas and C.S. Yu, On graphs with polynomially solvable maximum-weight clique problem, Networks, Vol. 19: 247–253, 1989.MathSciNetzbMATHGoogle Scholar
  33. [33]
    D.H. Ballard and M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, N.J., 1982.Google Scholar
  34. [34]
    D.H. Ballard, P.C. Gardner and M.A. Srinivas, Graph problems and connectionist architectures, Technical Report TR 167, Dept. Computer Science, University of Rochester, 1987Google Scholar
  35. [35]
    F. Barahona, A. Weintraub, and R. Epstein, Habitat dispersion in forest planning and the stable set problem, Oper. Res. Vol. 40, Supp. 1: S14 — S21, 1992.Google Scholar
  36. [36]
    H.G. Barrow and R.M. Burstall, Subgraph isomorphism, matching relational structures and maximal cliques, Inform. Proc. Lett., Vol. 4: 83–84, 1976.zbMATHCrossRefGoogle Scholar
  37. [37]
    R. Battiti and M. Protasi, Reactive local search for the maximum clique problem, Technical Report TR-95–052, International Computer Science Institute, Berkeley, CA, 1995.Google Scholar
  38. [38]
    A.R. Bednarek and O.E. Taulbee, On maximal chains, Roum. Math. Pres et Appl., Vol. 11: 23–25, 1966.MathSciNetzbMATHGoogle Scholar
  39. [39]
    L.W. Beineke, A survey of packings and coverings in graphs, in: G. Chartrand and S. Kapoor (Eds.), Many Facets of Graph Theory, Springer: 45–53, Berlin, 1969.Google Scholar
  40. [40]
    M. Bellare, O. Goldreich, C. Lund and A. Russell, Efficient probabilistically checkable proofs and application to approximation, Proc. 25th Ann. ACM Symp. Theory of Comput.: 294–304, 1993.Google Scholar
  41. [41]
    M. Bellare, O. Goldreich and M. Sudan, Free bits, PCPs and nonapproximability—Towards tight results, SIAM J. Comput. Vol. 27: 804–915, 1997.MathSciNetCrossRefGoogle Scholar
  42. [42]
    M. Bellare and M. Sudan, Improved nonapproximability results, Proc. 26th Ann. ACM Symp. Theory of Comput.: 184–193, 1994.Google Scholar
  43. [43] C. Berge and V. Chvâtal (Eds.), Topics on Perfect Graphs, Ann. Discr. Math. Vol. 21, 1984.Google Scholar
  44. [44]
    P. Berman and A. Pelc, Distributed fault diagnosis for multiprocessor systems, Proc. of the 20th Annual Int. Symp. on Fault- Tolerant Computing (Newcastle, UK): 340–346, 1990.Google Scholar
  45. [45]
    P. Berman and G. Schnitger, On the complexity of approximating the independent set problem, in Proc.1989 Symposium on Theoret. Aspects of Comp. Sci., Springer, Lecture Notes in Computer Sciences Vol. 349: 256–268, Berlin, 1989.Google Scholar
  46. [46]
    P. Berman and G. Schnitger, On the complexity of approximating the independent set problem, Inform. and Comput., Vol. 96: 77–94, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    A. Bertoni, P. Campadelli and G. Grossi, A discrete neural algorithm for the maximum clique problem: Analysis and circuit implementation, presented at WAE’97: Int. Workshop on Algorithm Engineering, Venice, Italy, 1997.Google Scholar
  48. [48]
    B.K. Bhattacharya, P. Hell and J. Huang, A linear algorithm for maximum weight cliques in proper circular arc graphs, SIAM J. Discr. Math. Vol. 9: 274–289, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    B.K. Bhattacharya and D. Kaller, An O(m+n log n) algorithm for the maximum clique problem in circular-arc graphs, J. Algorithms Vol. 25: 33–358, 1997.MathSciNetGoogle Scholar
  50. [50]
    D.M. Blough, Fault detection and diagnosis in multiprocessor systems Ph.D. Thesis The Johns Hopkins University1988.Google Scholar
  51. [51]
    R.C. Bolles and R.A. Cain, Recognizing and locating partially visible objects: The locus-feature-focus method, Int. J. Robotics Res., Vol. 1: 57–82, 1982.CrossRefGoogle Scholar
  52. [52]
    R.C. Bolles and P. Horaud, 3DPO: A three-dimensional part orientation system, Int. J. Robotics Res., Vol. 5: 3–26, 1986.Google Scholar
  53. [53]
    B. Bollobâs, Random graphs, Academic Press, New York, NY, 1985.zbMATHGoogle Scholar
  54. [54]
    B. Bollobâs, Modern graph theory, Springer, New York, NY, 1998.zbMATHCrossRefGoogle Scholar
  55. [55]
    B. Bollobâs and P. Erdös, Cliques in Random Graphs, Math. Proc. Cambridge Philos. Soc., Vol. 80: 419–427, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    I.M. Bomze, Evolution towards the maximum clique J. Glob. Optim. Vol. 10: 143–164, 1997.Google Scholar
  57. [57]
    I.M. Bomze, Global escape strategies for maximizing quadratic forms over a simplex J. Global Optim. Vol. 11: 325–338, 1997.Google Scholar
  58. [58]
    I.M. Bomze, On standard quadratic optimization problems J. Glob. Optim. Vol. 13: 369–387, 1998.Google Scholar
  59. [59]
    I.M. Bomze, M. Budinich, M. Pelillo and C. Rossi, Annealed replication: A new heuristic for the maximum clique problem, submitted for publication, 1998.Google Scholar
  60. [60]
    I.M. Bomze and G. Danninger, A finite algorithm for solving general quadratic problems, J. Global Optim. Vol. 4: 1–16, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    I.M. Bomze, M. Pelillo, and R. Giacomini, Evolutionary approach to the maximum clique problem: Empirical evidence on a larger scale, in Developments in Global Optimization, I.M. Bomze, T. Csendes, R. Horst, and P.M. Pardalos (eds.), Kluwer: 95–108, Dordrecht, 1997.Google Scholar
  62. [62]
    I.M. Bomze, M. Pelillo, and V. Stix, Approximating the Maximum Weight Clique: An Evolutionary Game Theory Approach, manuscript in preparation, 1998.Google Scholar
  63. [63]
    I.M. Bomze and F. Rendi, Replicator dynamics for the evolution towards the maximum clique: Variants and experiments, in: High Performance Algorithms and Software in Nonlinear Optimization, R. De Leone, A. Murlí, P.M. Pardalos and G. Toraldo (eds.), Kluwer: 53–67, Dordrecht, 1998.Google Scholar
  64. I.M. Bomze and V. Stix, Genetical engineering via negative fitness: Evolutionary dynamics for global optimization, to appear in: Ann. Oper. Res. Vol. 90, 1999.Google Scholar
  65. [65]
    R.E. Bonner, On some clustering techniques, IBM J. Res. Develop., Vol. 8: 22–32, 1964.zbMATHCrossRefGoogle Scholar
  66. [66]
    R. Boppana and M.M. Halldórsson, Approximating maximum independent sets by excluding subgraphs, BIT, Vol. 32: 180–196, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    M. Boulala and J.P. Uhry, Polytope des Independants dans un Graphe Serie-Parallele, Discr. Math., Vol. 27: 225–243, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    J.-M. Bourjolly, P. Gill, G. Laporte and H. Mercure, An exact quadratic 0–1 algorithm for the stable set problem, in [189]: 53–73, 1996.Google Scholar
  69. [69]
    J.-M. Bourjolly, G. Laporte and H. Mercure, A combinatorial column generation algorithm for the maximum stable set problem, Oper. Res. Lett. Vol. 20: 21–29, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    D.P. Bovet and P. Crescenzi, Introduction to the Theory of Complexity, Prentice-Hall, Englewood Cliffs, N.J., 1994.Google Scholar
  71. [71]
    D. Brelaz, New methods to color the vertices of a graph, Commun. ACM, Vol. 22: 251–256, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    M. Brockington and J.C. Culberson, Camouflaging independent sets in quasi-random graphs, in [189]: 75–88, 1996.Google Scholar
  73. [73]
    C. Bron and J. Kerbosch, Algorithm 457: Finding all cliques of an undirected graph, Commun. ACM, Vol. 16: 575–577, 1973.zbMATHGoogle Scholar
  74. [74]
    A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, A new Table of constant weight codes, IEEE Trans. Inform. Theory, Vol. 36: 1334–1380, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  75. [75]
    M. Budinich, Bounds on the maximum clique of a graph, submitted (“mbh/
  76. [76]
    M. Budinich and P. Budinich, A Clifford algebra formulation of the maximum clique problem of a graph, preprint in preparation (will be available from http: //www. t s. infn. it/’mbh/PubNN. html).Google Scholar
  77. [77]
    T.N. Bui and P.H. Eppley A hybrid genetic algorithm for the maximum clique problem, Proc. 6th Int. Conf. Genetic Algorithms: 478–484, 1995.Google Scholar
  78. [78]
    M. Burlet and J. Fonlupt, Polynomial algorithm to recognize a Meyniel graph, W.R. Pulleyblank (ed.), Progress in Combinatorial Optimization, Academic Press, Toronto: 69–99, 1984.Google Scholar
  79. [79]
    J.E. Burns, The maximum independent set problem for cubic planar graph, Networks, Vol. 9: 373–378, 1989MathSciNetCrossRefGoogle Scholar
  80. [80]
    R. Carraghan and P.M. Pardalos, An exact algorithm for the maximum clique problem, Oper. Res. Lett., Vol. 9: 375–382, 1990.zbMATHCrossRefGoogle Scholar
  81. [81]
    R. Carraghan and P.M. Pardalos, A parallel algorithm for the maximum weight clique problem, Technical Report CS-90–40, Dept. of Computer Science, Penn. State Univ., 1990.Google Scholar
  82. [82]
    B. Carter and K. Park, How good are genetic algorithms at finding large cliques: An experimental study, Technical Report BU-CS-93015, Computer Science Dept., Boston University, 1993.Google Scholar
  83. [83]
    M.-S. Chang, Y.-H. Chen, G.J. Chang, and J.-H. Yan, Algorithmic aspects of the generalized clique-transversal problem on chordal graphs, Discr. Appl. Math.,Vol. 66: 189–203, 1996.Google Scholar
  84. [84]
    R.C. Chang, On the query complexity of clique size and maximum satisfiability, J. Comput. Syst. Sci., Vol. 53: 298–313, 1996.zbMATHCrossRefGoogle Scholar
  85. [85]
    R.C. Chang, W.I. Gasarch, C. Lund, On bounded queries and approximation, SIAM J. Comput., Vol. 26: 188–209, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  86. [86]
    R.C. Chang and H.S. Lee, Finding a maximum set of independent chords in a circle, Inform. Proc. Lett., Vol. 41: 99–102, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  87. [87]
    N. Chiba and T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput., Vol. 14: 210–223, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  88. [88]
    N. Chiba, T. Nishizeki and N. Saito, An approximation algorithm for the maximum independent set problem on planar graphs, SIAM. J. Comput., Vol. 11: 663–675, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  89. [89]
    N. Chiba, T. Nishizeki and N. Saito, An algorithm for finding a large independent set in planar graphs, Networks, Vol. 13: 247–252, 1983.MathSciNetzbMATHCrossRefGoogle Scholar
  90. [90]
    E. Choukhmane and J. Franco, An approximation algorithm for the maximum independent set problem in cubic planar graphs, Networks, Vol. 16: 349–356, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  91. [91]
    M. Chrobak and J. Naor, An efficient parallel algorithm for computing a large independent set in a planar graph, Algorithmica, Vol. 6: 80 1815, 1991.MathSciNetGoogle Scholar
  92. [92]
    V. Chvâtal, On certain polytopes associated with graphs, J. Combin. Theory B, Vol. 18: 138–154, 1975.zbMATHCrossRefGoogle Scholar
  93. [93]
    V. Chvâtal, Determining the stability number of a graph, SIAM J. Comput., Vol. 6: 643–662. 1977.MathSciNetzbMATHCrossRefGoogle Scholar
  94. [94]
    V. Chvâtal, A greedy heuristic for the set-covering problem, Math. Oper. Res., Vol. 4: 233–23, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  95. [95]
    V. Chvâtal, Perfectly orderable graphs, Ann. Discr. Math., Vol. 21: 63–65, 1985.Google Scholar
  96. [96]
    K. Corradi and S. Szabo, A combinatorial approach for Keller’s conjecture, Periodica Mathematica Hungarica, Vol. 21: 95–100, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  97. [97]
    P. Crescenzi, C. Fiorini and R. Silvestri, A Note on the approximation of the MAX CLIQUE problem, Inform. Process. Lett. 40: 1–5, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  98. [98]
    F. Della Croce and R. Tadei, A multi-KP modeling for the maximum-clique problem, Europ. J. Oper. Res., Vol. 73: 555–561, 1994.zbMATHCrossRefGoogle Scholar
  99. [99]
    V.-D. Cung, S. Dowaji, B. Le Cun, T. Mautor and C. Roucairol, Concurrent data structures and load balancing strategies for parallel branch-and-bound/A* algorithms, in S.N. Bhatt (ed.), Parallel algorithms, 3rd DIMACS Implementation Challenge, October 17–19, 1994, AMS DIMACS Ser. Discrete Math. Theor. Comput. Sci. Vol. 30: 141–162, 1997.Google Scholar
  100. [100]
    D.M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, Academic Press, New York, NY, 1980.Google Scholar
  101. [101]
    E. Dahlhaus and M. Karpinski, A fast parallel algorithm for computing all maximal cliques in a graph and the related problems, in: Algorithm Theory. Proc. 1st Scand. Workshop, Halmstad/Sweden 1988. Lect. Notes Comput. Sci. Vol. 318: 139–144, 1988.Google Scholar
  102. [102]
    C. De Simone and A. Sassano, Stability number and bull-and chair-free graphs, Discr. Appl. Math., Vol. 41: 121–129, 1993.zbMATHCrossRefGoogle Scholar
  103. [103]
    V. Degot and J.M. Hualde, De l’utilisation de la notion de clique en matière de typologie des populations (in French), R.A.I.R.O., Vol. 9: 5–18, 1975.zbMATHGoogle Scholar
  104. [104]
    N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall, Englewood Cliffs, NJ, 1974.zbMATHGoogle Scholar
  105. [105]
    J.F. Desler and S.L. Hakimi, On finding a maximum internally stable set of a graph, Proc. of Fourth Annual Princeton Conference on Information Sciences and Systems, Vol. 4: 459–462, Princeton, NJ, 1970.Google Scholar
  106. [106]
    G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc., Vol. 27: 85–92, 1952.MathSciNetzbMATHCrossRefGoogle Scholar
  107. [107]
    G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem., Univ. Hamburg, Vol. 25: 71–76, 1961.MathSciNetzbMATHCrossRefGoogle Scholar
  108. [108]
    P. Doreian, A note on the detection of cliques in valued graphs, Sociometry, Vol. 32: 237–242, 1969.CrossRefGoogle Scholar
  109. [109]
    D.-Z. Du, B. Gao and W. Wu, A special case for subset interconnection designs, Discr. Appl. Math., Vol. 78: 51–60, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  110. [110]
    C. Ebenegger, P.L. Hammer, and D. de Werra, Pseudo-boolean functions and stability of graphs, Ann. Discr. Math., Vol. 19: 83–98, 1984.Google Scholar
  111. [111]
    U. Feige, S. Goldwasser, L. Lovâsz, S. Safra, and M. Szegedy, Approximating the maximum clique is almost NP-complete, Proc. 32nd IEEE Symp. on Foundations of Computer Science: 2–12, 1991.Google Scholar
  112. [112]
    U. Feige, S. Goldwasser, L. Lovâsz, S. Safra, and M. Szegedy, Interactive proofs and the hardness of approximating cliques, J. ACM, Vol. 43: 268–292, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  113. [113]
    U. Feige and J. Kilian, Two prover protocols—Low error at affordable rates, Proc. 26th Ann. ACM Symp. Theory of Comput.: 172–183, 1994.Google Scholar
  114. [114]
    S. Felsner, R. Mueller and L. Wernisch, Trapezoid graphs and generalizations, geometry and algorithms, Discr. Appl. Math., Vol. 74: 13–32, 1997.Google Scholar
  115. [115]
    T.A. Feo, M.G.C. Resende and S.H. Smith, A greedy randomized adaptive search procedure for maximum independent set, Oper. Res., Vol. 42: 860–878, 1994.zbMATHCrossRefGoogle Scholar
  116. [116]
    M.L. Fisher and L.A. Wolsey, On the greedy heuristic for continuous covering and packing problems, SIAM J. Alg. Discr. Meth., Vol. 3: 584–591, 1982.MathSciNetzbMATHGoogle Scholar
  117. [117]
    C. Fleurent and J.A. Ferland, Object-oriented implementation of heuristic search methods for graph coloring, maximum clique, and satisfiability, in [189]: 619–652, 1996.Google Scholar
  118. [118]
    J.A. Foster and T. Soule, Using genetic algorithms to find maximum cliques, Technical Report LAL 95–12, Dept. of Computer Science, U. Idaho, 1995.Google Scholar
  119. [119]
    A. Frank, Some polynomial algorithms for certain graphs and hyper-graphs, Proc. 5th British Combin. Conf.: 211–226, 1976.Google Scholar
  120. [120]
    C. Friden, A. Hertz, and D. de Werra, STABULUS: A technique for finding stable sets in large graphs with tabu search, Computing, Vol. 42: 35–44, 1989.zbMATHGoogle Scholar
  121. [121]
    C. Friden, A. Hertz and M. de Werra, TABARIS: An exact algorithm based on tabu search for finding a maximum independent set in a graph, Comput. Oper. Res., Vol. 17: 437–445, 1990.zbMATHCrossRefGoogle Scholar
  122. [122]
    A. Frieze, On the independence number of random graphs, Discr. Math., Vol. 81: 171–175, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  123. [123]
    K. Fujisawa, M. Kojima, and K. Nakata, Exploiting sparsity in primal-dual interior-point methods for semidefinite programming, Math. Programming, Vol. 79: 235–253, 1997.MathSciNetzbMATHGoogle Scholar
  124. [124]
    N. Funabiki, Y. Takefuji, and K.C. Lee, A neural network model for finding a near-maximum clique, J. Parallel Distrib. Comput., Vol. 14: 340–344, 1992.CrossRefGoogle Scholar
  125. [125]
    M. Carey and D. Johnson, The complexity of near-optimal coloring, J. ACM, Vol. 23: 43–49, 1976.CrossRefGoogle Scholar
  126. [126]
    M. Garey and D. Johnson, Computers and Intractability—A guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979.zbMATHGoogle Scholar
  127. [127]
    F. Gavril, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph, SIAM J. Comput., Vol. 1: 180–187, 1972.MathSciNetzbMATHCrossRefGoogle Scholar
  128. [128]
    F. Gavril, Algorithms for a maximum clique and a maximum independent set of a circle graph, Networks, Vol. 3: 261–273, 1973.MathSciNetzbMATHCrossRefGoogle Scholar
  129. [129]
    F. Gavril, Algorithms on circular arc graphs, Networks, Vol. 4: 357369, 1974.Google Scholar
  130. [130]
    M. Gendreau, J.C. Picard and L. Zubieta, An efficient implicit enumeration algorithm for the maximum clique problem, A. Kurzhanski et al. (eds), Lecture Notes in Economics and Mathematical Systems, Vol. 304: 70–91, Springer, Berlin 1988.Google Scholar
  131. [131]
    A. Gendreau, L. Salvail, and P. Soriano, Solving the maximum clique problem using a tabu search approach, Ann. Oper. Res., Vol. 41: 385–403, 1993.zbMATHCrossRefGoogle Scholar
  132. [132]
    L. Gerhards and W. Lindenberg, Clique detection for nondirected graphs: Two new algorithms, Computing, Vol. 21: 295–322, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  133. [133]
    A.M.H. Gerards and A. Schrijver, Matrices with the Edmonds-Johnson property, Combinatorica, Vol. 6: 403–417, 1986.MathSciNetCrossRefGoogle Scholar
  134. [134]
    L.E. Gibbons, D.W. Hearn and P.M. Pardalos, A continuous based heuristic for the maximum clique problem, in [189]: 103–124, 1996.Google Scholar
  135. [135]
    L.E. Gibbons, D.W. Hearn, P.M. Pardalos, and M.V. Ramana, Continuous characterizations of the maximum clique problem, Math. Oper. Res., Vol. 22: 754–768, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  136. [136]
    F. Glover, Tabu search—Part I, ORSA J. Comput., Vol. 1: 190–260, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  137. [137]
    F. Glover, Tabu search—Part II, ORSA J. Comput., Vol. 2: 4–32, 1990.zbMATHCrossRefGoogle Scholar
  138. [138]
    F. Glover and M. Laguna, Tabu search, in Modern Heuristic Techniques for Combinatorial Problems, C. Reeves (ed.), Blackwell, Oxford, UK: 70–141, 1993.Google Scholar
  139. [139]
    G.H. Godbeer, J. Lipscomb, and M. Luby, On the computational complexity of finding stable state vectors in connectionist models (Hopfield nets), Technical Report 208/88, Dept. of Computer Science, University Toronto, 1988.Google Scholar
  140. [140]
    M.X. Goemans, Semidefinite programming in combinatorial optimization, Math. Programming, Vol.. 79: 143–161, 1997.Google Scholar
  141. [141]
    D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989.Google Scholar
  142. [142]
    M.K. Goldberg and R.D. Rivenburgh, Constructing cliques using restricted backtracking, in [189]: 89–101, 1996.Google Scholar
  143. [143]
    M. Goldberg and T. Spencer, A new parallel algorithm for the maximal independent set problem, SIAM J. Comput., Vol. 18: 419–427, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  144. [144]
    M. Goldberg and T. Spencer, Constructing a maximal independent set in parallel, SIAM J. Discr. Math., Vol. 2: 322–328, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  145. [145]
    M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, NY, 1980.zbMATHGoogle Scholar
  146. [146]
    M.C. Golumbic and P.L. Hammer, Stability in circular-arc-graphs, J. Algorithms, Vol. 9: 314–320, 1988.MathSciNetzbMATHGoogle Scholar
  147. [147]
    G.R. Grimmett and W.R. Pulleyblank, Random near-regular graphs and the node packing problem, Oper. Res. Lett., Vol. 4: 169–174, 1985.Google Scholar
  148. [148]
    T. Grossman, Applying the INN model to the max clique problem, in [189]: 125–146, 1996.Google Scholar
  149. [149]
    M. Grötschel, L. Lovâsz and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, Vol. 1: 169–197, 1981.Google Scholar
  150. [150]
    M. Grötschel, L. Lovâsz and A. Schrijver, Relaxations of vertex packing, J. Combin. Theory B, Vol. 40: 330–343, 1986.zbMATHGoogle Scholar
  151. [151]
    M. Grötschel, L. Lovâsz and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, 2nd Ed., Springer, Berlin, 1993.zbMATHCrossRefGoogle Scholar
  152. [152]
    M. Grötschel, L. Lovâsz and A. Schrijver, Polynomial algorithms for perfect graphs, Ann. Discr. Math., Vol. 21: 325–356, 1989.Google Scholar
  153. [153]
    U.I. Gupta, D.T. Lee and J.Y.T. Leung, Efficient algorithms for interval graphs and circular-arc graphs, Networks, Vol. 12: 459–467, 1982.MathSciNetzbMATHGoogle Scholar
  154. [154]
    G. Hajós, Sur la factorisation des abeliens, Casopis Vol. 74: 189–196, 1950.Google Scholar
  155. [155]
    M.-H. Han and D. Jang, The use of maximum curvature points for the recognition of partially occluded objects, Pattern Recognition, Vol. 23: 21–33, 1990.Google Scholar
  156. [156]
    P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, Computing, Vol. 44: 279–303, 1990.MathSciNetzbMATHGoogle Scholar
  157. [157]
    F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.Google Scholar
  158. [158]
    F. Harary and I.C. Ross, A procedure for clique detection using the group matrix, Sociometry, Vol. 20: 205–215, 1957.MathSciNetGoogle Scholar
  159. [159]
    J. Hasselberg, P.M. Pardalos and G. Vairaktarakis, Test case generators and computational results for the maximum clique problem, J. Global Optim., Vol. 3: 463–482, 1993.Google Scholar
  160. J. Hastad, Testing of the long code and hardness clique, Proc. 28th Ann. Symp. Theory of Comput.: 11-19, 1996.Google Scholar
  161. [161]
    J. Hastad, Clique is hard to approximate within n 1— ß, Proc. 37th Ann. Symp. Found. Comput. Sci.: 627–636, 1996.Google Scholar
  162. [162]
    S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan, New York, 1994.zbMATHGoogle Scholar
  163. [163]
    R.B. Hayward, Weakly triangulated graphs, J. of Combin. Theory B, Vol. 39: 200–209, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  164. [164]
    R. Hayward, C.T. Hoang and F. Maffray, Optimizing weakly triangulated graphs, Graphs and Combinatorics, Vol. 5: 339–349, 1989. See also Erratum, Vol. 6: 33–35, 1990.Google Scholar
  165. [165]
    I. Heller, On linear systems with integral valued solutions, Pacific J. Math., Vol. 7: 1351–1364, 1957Google Scholar
  166. [166]
    C. Helmberg, F. Rendl, R.J. Vanderbei and H. Wolkowicz, An interior-point method for semidefinite programming, SIAM J. Optim., Vol. 6: 342–361, 1996.MathSciNetzbMATHGoogle Scholar
  167. [167]
    J. Hertz, A. Krogh and R.G. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, Redwood City, CA, 1991.Google Scholar
  168. [168]
    A. Hertz, E. Taillard and D. de Werra, Tabu search, in [2]: 121–136.Google Scholar
  169. [169]
    M. Hifi, A genetic algorithm-based heuristic for solving the weighted maximum independent set and some equivalent problems, J. Oper. Res. Soc. Vol. 48: 612–622, 1997.zbMATHGoogle Scholar
  170. [170]
    C.W. Ho and R.C.T. Lee, Efficient parallel algorithms for finding maximal cliques, clique trees, and minimum coloring of chordal graphs, Inform. Proc. Lett., Vol. 28: 301–309, 1988.MathSciNetzbMATHGoogle Scholar
  171. [171]
    J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.zbMATHCrossRefGoogle Scholar
  172. [172]
    J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.Google Scholar
  173. [173]
    S. Homer and M. Peinado, Experiments with polynomial-time CLIQUE approximation algorithms on very large graphs, in [189]: 147–167, 1996.Google Scholar
  174. [174]
    J.J. Hopfield and D.W. Tank, “Neural” computation of decisions in optimization problems, Biol. Cybern., Vol. 52: 141–152, 1985.MathSciNetzbMATHGoogle Scholar
  175. [175]
    R. Horaud and T. Skordas, Stereo correspondence through feature grouping and maximal cliques, IEEE Trans. Pattern Anal. Machine Intell., Vol. 11: 1168–1180, 1989.CrossRefGoogle Scholar
  176. [176]
    R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1985.Google Scholar
  177. [177]
    D.J. Houck, On the vertex packing problem, Ph.D. dissertation, The Johns Hopkins University, Baltimore, 1974.Google Scholar
  178. [178]
    D.J. Houck and R.R. Vemuganti, An algorithm for the vertex packing problem Oper. Res. Vol. 25: 773–787 1977.Google Scholar
  179. [179]
    W.L. Hsu, Maximum weight clique algorithms for circular-arc graphs and circle graphs, SIAM J. Comput., Vol. 14: 224–231, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  180. [180]
    W.L. Hsu, The coloring and maximum independent set problems on planar perfect graphs, J. ACM, Vol. 35: 535–563, 1988.CrossRefGoogle Scholar
  181. [181]
    W.Hsu, Y. Ikura and G.L. Nemhauser, A polynomial algorithm for maximum weighted vertex packings on graphs without long odd cycles, Math. Programming, Vol. 20: 225–232, 1981.Google Scholar
  182. [182]
    H.B. Hunt III, M.V. Marathe, V. Radhakrishnan and R.E. Stearns, The complexity of planar counting problems, SIAM J. Comput., Vol. 27: 1142–1167, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  183. [183]
    A. Jagota, Approximating Maximum Clique with a Hopfield Network, IEEE Trans. Neural Networks, Vol. 6: 724–735, 1995.CrossRefGoogle Scholar
  184. [184]
    A. Jagota (ed.), Neural Networks for Combinatorial Optimization J. Artif. Neural Networks Vol. 2 1995.Google Scholar
  185. [185]
    A. Jagota and K.W. Regan, Performance of neural net heuristics for maximum clique on diverse highly compressible graphs, J. Global Optim., Vol. 10: 439–465, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  186. [186]
    A. Jagota, L. Sanchis, and R. Ganesan, Approximately solving maximum clique using neural networks and related heuristics, in [189]: 169–204, 1996.Google Scholar
  187. [187]
    M. Jerrum, Large cliques elude the Metropolis process, Random Structures and Algorithms, Vol. 3: 347–359, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  188. [188]
    D.S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. Syst. Sci., Vol. 9: 256–278, 1974.zbMATHCrossRefGoogle Scholar
  189. [189]
    D.S. Johnson and M.A. Trick (eds.), Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge,DI-MACS Vol. 26,American Mathematical Society, 1996 (see also http:/ / Scholar
  190. [190]
    D.S. Johnson, M. Yannakakis and C.H. Papadimitriou, On generating all maximal independent sets, Inform. Proc. Lett., Vol. 27: 119–123, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  191. [191]
    L.F. Johnson, Determining cliques of a graph, Proc. 5th Manitoba Conf. on Numer. Math.: 429–437, 1975.Google Scholar
  192. [192]
    H.C. Johnston, Cliques of a graph: Variations on the Bron-Kerbosch algorithm, Int. J. Comput. Inform. Sci., Vol. 5: 209–238, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  193. [193]
    N. Karmarkar, K.G. Ramakrishnan and M.G.C. Resende, An interior point approach to the maximum independent set problem in dense random graphs, Proc. XV Latin American Conference on Informatics, Santiago, Chile, I: 241–260, 1989.Google Scholar
  194. [194]
    R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, New York: 85–103, 1972.Google Scholar
  195. [195]
    R.M. Karp and A. Wigderson, A fast parallel algorithm for the maximal independent set problem, J. ACM, Vol. 32: 762–773, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  196. [196]
    M. Karpinski and A. Zelikovsky, Approximating dense cases of covering problems, in P.M. Pardalos et al. (eds), Network Design: Connectivity and Facilities Location, DIMACS Workshop, April 28–30, 1997. AMS-DIMACS Ser. Discr. Math. Theor. Comput. Sci. Vol. 40: 169–178, 1998.Google Scholar
  197. [197]
    T. Kashiwabara, S. Masuda, K, Nakajima and T. Fujisawa, Generation of maximum independent sets of a bipartite graph and maximum cliques of a circular-arc-graph, J. Algorithms, Vol. 13: 161–174, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  198. [198]
    O.H. Keller, Über die lückenlose Erfüllung des Raumes mit Würfeln (in German), J. Reine Angew. Math., Vol. 163: 231–248, 1930.zbMATHGoogle Scholar
  199. [199]
    P. Kikusts, Another algorithm determining the independence number of a graph, Elektron. Inf. Verarb. Kybern. ELK 22: 157–166, 1986.MathSciNetzbMATHGoogle Scholar
  200. [200]
    D.S. Kim and D.-Z. Du, On conflict-free channel set assignments for optical cluster-based hypercube networks, In DIMACS Series Vol. 46: 109–116, American Mathematical Society (1999).Google Scholar
  201. [201]
    S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing, Science, Vol. 220: 671–680, 1983.MathSciNetzbMATHCrossRefGoogle Scholar
  202. [202]
    P.N. Klein, Efficient parallel algorithms for chordal graphs, Proc. 29th Ann. Symp. Found. Computer Sci.: 150–161, 1988.Google Scholar
  203. [203]
    J. Kleinberg and M.X. Goemans, The Lovâsz theta function and a semidefinite programming relaxation of vertex cover, SIAM J. Discr. Math. Vol. 11: 196–204, 1997.MathSciNetCrossRefGoogle Scholar
  204. [204]
    D.E. Knuth, The sandwich theorem, Electr. J. Combin.,Vol. 1: Al, 1994 ( Scholar
  205. [205]
    R. Kopf and G. Ruhe, A computational study of the weighted independent set problem for general graphs, Found. Control Engin., Vol. 12: 167–180, 1987.MathSciNetzbMATHGoogle Scholar
  206. [206]
    D. Kozen, A clique problem equivalent to graph isomorphism, SIGACT News: 50–52, Summer 1978.Google Scholar
  207. [207]
    J.C. Lagarias and P.W. Shor, Keller’s cube-tiling conjecture is false in high dimensions, Bull. Amer. Math. Soc. New Ser., Vol. 27: 279–283, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  208. [208]
    P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applications, Reidel, Dordrecht, 1987.zbMATHCrossRefGoogle Scholar
  209. [209]
    E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, 1976.Google Scholar
  210. [210]
    L.J. Leifman, On construction of all maximal complete subgraphs (cliques) of a graph, Technical Report, Dept. of Mathematics., University of Haifa, Israel, 1976.Google Scholar
  211. [211]
    F. Lin and K. Lee, A parallel computation network for the maximum clique problem, in Proc. 1st Int. Conf. Fuzzy Theory Tech., Baton Rouge, Louisiana, 1992.Google Scholar
  212. [212]
    R.J. Lipton, On proving that a graph has no large clique: A connection with Ramsey theory, Inform. Proc. Lett., Vol. 58: 39–42, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  213. [213]
    C.-K. Looi, Neural network methods in combinatorial optimization, Comput. Oper. Res.,Vol. 19: 191–208, 1992.Google Scholar
  214. [214]
    E. Loukakis, A new backtracking algorithm for generating the family of maximal independent sets of a graph, Comp. Math. Appl., Vol. 9: 583–589, 1983.MathSciNetzbMATHCrossRefGoogle Scholar
  215. [215]
    E. Loukakis and C. Tsouros, A depth first search algorithm to generate the family of maximal independent sets of a graph lexicographically, Computing, Vol. 27: 249–266, 1981.MathSciNetCrossRefGoogle Scholar
  216. [216]
    E. Loukakis and C. Tsouros, Determining the number of internal stability of a graph, Int. J. Comp. Math, Vol. 11: 207–220, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  217. [217]
    E. Loukakis and C. Tsouros, An algorithm for the maximum internally stable set in a weighted graph, Int. J. Comput. Math., Vol. 13: 117129, 1983.Google Scholar
  218. [218]
    L. Lovâsz, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, Vol. 25: 1–7, 1979.Google Scholar
  219. [219]
    L. Lovâsz and A. Schrijver, Cones of matrices and set-functions and 0–1 optimization, SIAM J. Optim.,Vol. 1: 166–190, 1991.Google Scholar
  220. [220]
    M. Luby, A simple parallel algorithm for the maximum independent set problem, SIAM J. Comput., Vol. 15: 1036–1053, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  221. [221]
    J. MacWilliams and N.J.A. Sloane, The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1979.zbMATHGoogle Scholar
  222. [222]
    K. Maghout, Sur la determination des nombres de stabilite et du nombre chromatique d’un graphe, C.R. Acad. Sci., Paris, Vol. 248: 2522–2523, 1959.MathSciNetGoogle Scholar
  223. [223]
    G.K. Manacher and T.A. Mankus, Finding a maximum clique in a set of proper circular arcs in 0(n) with applications, Int. J. Found. Comput. Sci., Vol. 8: 443–467, 1997.zbMATHCrossRefGoogle Scholar
  224. [224]
    C. Mannino and A. Sassano, Edge projection and the maximum cardinality stable set problem, in [189]: 205–219, 1996.Google Scholar
  225. [225]
    E. Marchiori, A simple heuristic based genetic algorithm for the maximum clique problem, Proc. ACM Symp. Appl. Comput.: 366–373, 1998.Google Scholar
  226. [226]
    P.M. Marcus, Derivation of maximal compatibles using boolean algebra, IBM J. Res. Develop., Vol. 8: 537–538, 1964.Google Scholar
  227. [227]
    S. Masuda and K. Nakajima, An optimal algorithm for finding a maximum independent set of a circular-arc graph, SIAM J. Comput.,Vol. 17: 41–52, 1988Google Scholar
  228. [228]
    S. Masuda, K. Nakajima, T, Kashiwabara and T. Fujisawa, Efficient algorithms for finding maximum cliques of an overlap graph, Networks, Vol. 20: 157–171, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  229. [229]
    D.W. Matula, On the complete subgraphs of a random graph, Proc. 2nd Conf. Combin. Theory Appl., Chapel Hill, NC: 356–369, 1970.Google Scholar
  230. [230]
    D.W. Matula, The largest clique size in a random graph, Technical Report CS 7608, Department of Computer Science, Southern Methodist University, 1976.Google Scholar
  231. [231]
    W. Meeusen and L. Cuyvers, Clique detection in directed graphs: A new algorithm, J. Comput. Appl. Math., Vol. 1: 185–193, 1975.MathSciNetzbMATHGoogle Scholar
  232. [232]
    W. Meeusen and L. Cuyvers, An annotated bibliography of clique-detection algorithms and related graph-theoretical problems, CAM Discussion Paper 7909, State University Center Antwerp, 1979.Google Scholar
  233. [233]
    H. Meyniel, On the perfect graph conjecture, Discr. Math., Vol. 16: 339–342, 1976.MathSciNetCrossRefGoogle Scholar
  234. [234]
    H. Meyniel, A new property of imperfect graphs and some consequences, Europ. J. Combin., Vol. 8: 313–316, 1987.MathSciNetzbMATHGoogle Scholar
  235. [235]
    G.J. Minty, On maximal independent sets of vertices in claw-free graphs, J. Combin. Theory B, Vol. 28: 284–304, 1980.MathSciNetzbMATHCrossRefGoogle Scholar
  236. [236]
    B. Mohar and S. Poljak, Eigenvalues in combinatorial optimization, In Combinatorial and Graph-Theoretic Problems in Linear Algebra R. Brualdi, S. Friedland and V. Klee, eds., IMA Volumes in Mathematics and Its Applications, Vol. 50, Springer, Berlin, 1993.Google Scholar
  237. [237]
    J.W. Moon and L. Moser, On cliques in graphs, Israel Journal of Mathematics, Vol. 3: 23–28, 1965.MathSciNetzbMATHCrossRefGoogle Scholar
  238. [238]
    T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of Turân, Canad. J. Math., Vol. 17: 533–540, 1965.MathSciNetzbMATHCrossRefGoogle Scholar
  239. [239]
    G.D. Mulligan and D.G. Corneil, Corrections to Bierstone’s algorithm for generating cliques, J. ACM, Vol. 19: 244–247, 1972.zbMATHCrossRefGoogle Scholar
  240. [240]
    W.J. Murphy, Computing independent sets in graphs with large girth, Discr. Appl. Math., Vol. 36: 167–170, 1992.CrossRefGoogle Scholar
  241. [241]
    A.S. Murthy, G. Parthasarathy and V.U.K. Sastry, Clique finding A genetic approach, Proc. 1st IEEE Conf. Evolutionary Comput.: 18–21, 1994.Google Scholar
  242. [242]
    J. Naor, M. Naor and A.A. Schaffer, Fast parallel algorithms for chordal graphs, Proc. 19th Annual ACM Symp. Theory Comput.: 355364, 1987.Google Scholar
  243. [243]
    G.L. Nemhauser and G. Sigismondi, A strong cutting plane/branchand bound algorithm for node packing, J. Opl. Res. Soc., Vol. 43: 443–457, 1992.zbMATHGoogle Scholar
  244. [244]
    G.L. Nemhauser and L.E. Trotter„ Properties of vertex packings and independence system polyhedra, Math. Programming, Vol. 6: 48–61, 1974.MathSciNetzbMATHCrossRefGoogle Scholar
  245. [245]
    G.L. Nemhauser and L.E. Trotter, Vertex packings: Structural properties and algorithms, Math. Programming, Vol. 8: 232–248, 1975.MathSciNetzbMATHCrossRefGoogle Scholar
  246. [246]
    G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, J. Wiley 86 Sons, New York, 1988.Google Scholar
  247. [247]
    H. Ogawa, Labeled point pattern matching by Delaunay triangulation and maximal cliques, Pattern Recognition, Vol. 19: 35–40, 1986.CrossRefGoogle Scholar
  248. [248]
    S. Olariu, Weak bipolarizable graphs, Discr. Math., Vol. 74: 159–171, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  249. [249]
    R.E. Osteen, Clique detection algorithms based on line addition and line removal, SIAM J. Appl. Math., Vol. 26: 126–135, 1974.MathSciNetzbMATHCrossRefGoogle Scholar
  250. [250]
    R.E. Osteen and J.T. Tou, A clique-detection algorithm based on neighborhoods in graphs, Int. J. Comput. Inform. Sci., Vol. 2: 257268, 1973.Google Scholar
  251. [251]
    Q. Ouyang, P.D. Kaplan, S. Liu and A. Libchaber, DNA solutions of the maximal clique problem, Science, Vol. 278: 446–449, 1997.CrossRefGoogle Scholar
  252. [252]
    M.W. Padberg, Covering, packing and knapsack problems, Ann. Discr. Math., Vol. 4: 265–287, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  253. [253]
    A. Panconesi and D. Ranjan, Quantifiers and approximation, Proc. 22nd ACM Ann. Symp. Theory of Comput.: 446–456, 1990.Google Scholar
  254. [254]
    A. Panconesi and D. Ranjan, Quantifiers and approximation, Theor. Comput. Sci., Vol. 107: 145–163, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  255. [255]
    C. Papadimitriou, Computational Complexity, Addison-Wesley, Amsterdam, 1994.zbMATHGoogle Scholar
  256. [256]
    C. Papadimitriou and M. Yannakakis, The clique problem for planar graphs, Inform. Proc. Lett., Vol. 13: 131–133, 1981.MathSciNetCrossRefGoogle Scholar
  257. [257]
    C. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity classes, Proc. 20th Ann. ACM STOC: 229–234, 1988.Google Scholar
  258. [258]
    C. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity classes, J. Comput. Syst. Sci., Vol. 43: 425–440, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  259. [259]
    P.M. Pardalos, Continuous approaches to discrete optimization problems, in Nonlinear Optimization and Applications, G. Di Pillo and F. Giannessi, eds., Plenum Press, New York: 313–328, 1996.Google Scholar
  260. [260]
    P.M. Pardalos and N. Desai, An algorithm for finding a maximum weighted independent set in an arbitrary graph, Int. J. Comput. Math., Vol. 38: 163–175, 1991.Google Scholar
  261. [261]
    P.M. Pardalos and A.T. Phillips, A global optimization approach for solving the maximum clique problem, Int. J. Comput. Math., Vol. 33: 209–216, 1990.zbMATHGoogle Scholar
  262. [262]
    P.M. Pardalos, J. Rappe and M.G.C. Resende, An Exact Parallel Algorithm for the Maximum Clique Problem, in High Performance Algorithms and Software in Nonlinear Optimization, R. De Leone, A. Murlí, P.M. Pardalos and G. Toraldo (eds.), Kluwer: 279–300, Dordrecht, 1998.Google Scholar
  263. [263]
    P. M. Pardalos and G. Rodgers, Parallel branch and bound algorithms for quadratic zero-one programming on a hypercube architecture, Ann. Oper. Res., Vol. 22: 271–292, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  264. [264]
    P. M. Pardalos and G. Rodgers, Computational aspects of a branch and bound algorithm for quadratic zero-one programming, Computing, Vol. 45: 131–144, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  265. [265]
    P.M. Pardalos and G.P. Rodgers, A branch and bound algorithm for the maximum clique problem, Comput. Oper. Res., Vol. 19: 363–375, 1992.zbMATHGoogle Scholar
  266. [266]
    P.M. Pardalos and J. Xue, The maximum clique problem, J. Global Optim., Vol. 4: 301–328, 1994.MathSciNetzbMATHGoogle Scholar
  267. [267]
    K. Park and B. Carter, On the effectiveness of genetic search in combinatorial optimization, Technical Report BU-CS-94–010,Computer Science Dept., Boston University, 1994. (a shorter version appears in: Proc. 10th ACM Symp. Appl. Comput.,1995.)Google Scholar
  268. [268]
    M.C. Paull and S.H. Unger, Minimizing the number of states in incompletely specified sequential switching functions, IRE Trans. Electr. Comput., Vol. EC-8: 356–367, 1959.Google Scholar
  269. [269]
    E.R. Peay, Jr., An iterative clique detection procedure, Michigan Math. Psychol. Program: MMPP 70–4, 1970.Google Scholar
  270. [270]
    E.R. Peay, Jr., Hierarchical clique structures, Sociometry, Vol. 37: 54–65, 1974.CrossRefGoogle Scholar
  271. [271]
    M. Pelillo, Relaxation labeling networks for the maximum clique problem, J. Artif. Neural Networks, Vol. 2: 313–328, 1995.Google Scholar
  272. [272]
    M. Pelillo, A unifying framework for relational structure matching, in: Proc. 14th Int. Conf. Pattern Recognition: 1316–1319, 1998.Google Scholar
  273. [273]
    M. Pelillo, Replicator equations, maximal cliques, and graph isomorphism, Neural Computation, to appear, 1999.Google Scholar
  274. [274]
    M. Pelillo and A. Jagota, Feasible and infeasible maxima in a quadratic program for maximum clique, J. Artif. Neural Networks, Vol. 2: 41 1420, 1995.Google Scholar
  275. [275]
    M. Pelillo, K. Siddiqi and S.W. Zucker, Matching hierarchical structures using association graphs, in H. Burkhardt and B. Neumann (eds.), Computer Vision—ECCV’98 (Lecture Notes in Computer Science, Vol. 1407), Springer, Berlin: 3–16, 1998.Google Scholar
  276. [276]
    O. Perron, Über lückenlose Ausfüllung des n-dimensionalen Raumes durch kongruente Würfel (in German), Math. Z., Vol. 46: 1–26, 161180. Zbl 22, 202, 1940.Google Scholar
  277. [277]
    C. Peterson and B. Söderberg, Artificial neural networks, in [2]: 173213, 1997.Google Scholar
  278. [278]
    J.C. Picard and M. Queyranne, On the integer-valued variables in the linear vertex packing problem, Math. Programming, Vol. 12: 97–101, 1977.MathSciNetzbMATHCrossRefGoogle Scholar
  279. [279]
    F. Pla and J.A. Marchant, Matching feature points in image sequences through a region-based method, Comput. Vision Image Understanding, Vol. 66: 271–285, 1997.CrossRefGoogle Scholar
  280. [280]
    F.P. Preparata, G. Metze and R.T. Chien, On the connection assignment problem of diagnosable systems, IEEE Trans. Electr. Comput., Vol. 16: 848–854, 1967.zbMATHCrossRefGoogle Scholar
  281. [281]
    W.R. Pulleyblank, Minimum node covers and 2-bicritical graphs, Math. Programming, Vol. 17: 91–103, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  282. [282]
    B. Radig, Image sequence analysis using relational structures, Pattern Recognition, Vol. 17: 161–167, 1984.CrossRefGoogle Scholar
  283. [283]
    P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating packing integer programs, J. Comput. Syst. Sci., Vol. 37: 130–143, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  284. [284]
    J. Ramanujam and P. Sadayappan, Optimization by neural networks, Proc. IEEE Int. Conf. Neural Networks: 325–332, 1988.Google Scholar
  285. [285]
    M.C.G. Resende, T.A. Feo, and S.H. Smith, Fortran subroutines for approximate solution of maximum independent set problems using GRASP, ACM Transactions on Mathematical Software, to appear 1999.Google Scholar
  286. [286]
    J.M. Robson, Algorithms for maximum independent sets, J. Algorithms, Vol. 7: 425–440, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  287. [287]
    D.J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl., Vol. 32: 597–609, 1970.MathSciNetzbMATHCrossRefGoogle Scholar
  288. [288]
    D.J. Rose, R.E. Tarjan and G.S. Leuker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., Vol. 5: 266–283, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  289. [289]
    D. Rotem and J. Urrutia, Finding maximum cliques in circle graphs, Networks, Vol. 11: 269–278, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  290. [290]
    B.E. Sagan, A note on independent sets in trees, SIAM J. Discr. Math., Vol. 1: 105–108, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  291. [291]
    L. Sanchis and A. Jagota, Some experimental and theoretical results on test case generators for the maximum clique problem, INFORMS J. Comput., Vol. 8: 87–102, 1996.zbMATHCrossRefGoogle Scholar
  292. [292]
    C.E. Shannon, Certain results in coding theory for noisy channels, Inform. and Control, Vol. 1: 6–25, 1957.MathSciNetzbMATHCrossRefGoogle Scholar
  293. [293]
    N. Z. Shor, Dual quadratic estimates in polynomial and Boolean programming, in Computational Methods in Global Optimization, P. M. Pardalos and J. B. Rosen (eds.), Ann. Oper. Res., Vol. 25: 163–168, 1990.Google Scholar
  294. [294]
    Y. Shrivastava, S. Dasgupta, and S.M. Reddy, Neural network solutions to a graph theoretic problem, in Proc. IEEE Int. Symp. Circuits Syst.: 2528–2531, 1990.CrossRefGoogle Scholar
  295. [295]
    Y. Shrivastava, S. Dasgupta, and S.M. Reddy, Guaranteed convergence in a class of Hopfield networks, IEEE Trans. Neural Networks, Vol. 3: 951–961, 1992.CrossRefGoogle Scholar
  296. [296]
    N.J.A. Sloane, Unsolved problems in graph theory arising from the study of codes, J. Graph Theory Notes of New York, Vol. 18: 11–20, 1989.Google Scholar
  297. [297]
    P. Soriano and M. Gendreau, Tabu search algorithms for the maximum clique problem, in [189]: 221–242, 1996.Google Scholar
  298. [298]
    P. Soriano and M. Gendreau, Diversification strategies in tabu search algorithms for the maximum clique problem, Ann. Oper. Res., Vol. 63: 189–207, 1996.zbMATHGoogle Scholar
  299. [299]
    V.T. Sós and E.G. Straus, Extremal of functions on graphs with applications to graphs and hypergraphs, J. Combin. Theory B, Vol. 32: 246–257, 1982Google Scholar
  300. [300]
    S.K. Stein, Algebraic tiling, Amer. Math. Monthly, Vol. 81: 445–462, 1974.zbMATHGoogle Scholar
  301. [301]
    S. Szabó, A reduction of Keller’s conjecture, Periodica Math. Hung., Vol. 17: 265–277, 1986.zbMATHCrossRefGoogle Scholar
  302. [302]
    Y. Takefuji, Neural Network Parallel Computing, Kluwer, Dordrecht, 1992.zbMATHCrossRefGoogle Scholar
  303. [303]
    Y. Takefuji, L. Chen, K. Lee and J. Huffman, Parallel algorithms for finding a near-maximum independent set of a circle graph, IEEE Trans. Neural Networks, Vol. 1: 263–267, 1990.Google Scholar
  304. [304]
    R.E. Tarjan, Finding a maximum clique, Technical Report 72–123, Computer Sci. Dept., Cornell University, Ithaca, NY, 1972.Google Scholar
  305. [305]
    R.E. Tarjan and A.E. Trojanowski, Finding a maximum independent set, SIAM J. Comput., Vol. 6: 537–546, 1977.MathSciNetzbMATHGoogle Scholar
  306. [306]
    R.E. Tarjan and M Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., Vol. 13: 566–579, 1984.MathSciNetzbMATHGoogle Scholar
  307. [307]
    E. Tomita, Y. Kohata and H. Takahashi, A simple algorithm for finding a maximum clique, Technical Report UEC-TR-05, 1988.Google Scholar
  308. [308]
    E. Tomita, S. Mitsuma and H. Takahashi, Two algorithms for finding a near-maximum clique, Technical Report UEC-TR-C1, 1988.Google Scholar
  309. [309]
    E. Tomita, A. Tanaka and H. Takahashi, The worst-case time complexity for finding all the cliques, Technical Report UEC-TR-05, 1988.Google Scholar
  310. [310]
    S. Tsukiyama, M. Ide, H. Aviyoshi and I. Shirakawa, A new algorithm for generating all the maximum independent sets, SIAM J. Comput., Vol. 6: 505–517, 1977.MathSciNetzbMATHCrossRefGoogle Scholar
  311. [311]
    P. Turin, On an extremal problem in graph theory (in Hungarian), Mat. és Fiz. Lapok, Vol. 48: 436–452, 1941.Google Scholar
  312. [312]
    L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput., Vol. 8: 410–421, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  313. [313]
    O. Verbitsky, On the hardness of approximating some optimization problems that are supposedly easier that MAX CLIQUE, Comb. Probab. Comput. Vol. 4: 167–180, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  314. [314]
    M. Vingron and P. Argos, Motif recognition and alignment for many sequences by comparison of dot-matrices, J. Molecular Biol., Vol. 218: 33–43, 1991.CrossRefGoogle Scholar
  315. [315]
    M. Vingron and P.A. Pevzner, Multiple sequence comparison and consistency on multipartite graphs. Adv. Appl. Math Vol. 16: 1–22, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  316. [316]
    H.S. Wilf, The eigenvalues of a graph and its chromatic number, J. London Math. Soc., Vol. 42: 330–332, 1967.MathSciNetzbMATHCrossRefGoogle Scholar
  317. [317]
    H.S. Wilf, Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1986.zbMATHGoogle Scholar
  318. [318]
    H.S. Wilf, Spectral bounds for the clique and independence numbers of graphs, J. Combin. Theory B, Vol. 40: 113–117, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  319. [319]
    S. Wimer, R.Y. Pinter and J. Feldman, Optimal chaining of CMOS transistors in a functional cell, IEEE Trans. Computer-Aided Design, Vol. 6: 795–801, 1987.CrossRefGoogle Scholar
  320. [320]
    J. Wu, T. Harada and T. Fukao, New method to the solution of maximum clique problem: Mean-field approximation algorithm and its experimentation. Proc. IEEE Int. Conf. Syst., Man, Cybern.: 22482253, 1994.Google Scholar
  321. [321]
    J. Xue, Fast Algorithms for Vertex Packing and Related Problems, Ph.D Thesis, GSIA, Carnegie Mellon University, 1991.Google Scholar
  322. [322]
    J. Xue, Edge-maximal triangulated subgraphs and heuristics for the maximum clique problem, Networks, Vol. 24: 109–120, 1994.zbMATHGoogle Scholar
  323. [323]
    M. Yannakakis, On the approximation of maximum satisfiability, Proc. 3rd Annual ACM-SIAM Symp. Discr. Algorithms, 1992.Google Scholar
  324. [324]
    M.-S. Yu, L. Yu and S.-J. Chang, Sequential and parallel algorithms for the maximum-weight independent set problem on permutation graphs, Inform. Proc. Lett., Vol. 46: 7–11, 1993.Google Scholar
  325. [325]
    B.-T. Zhang and S.-Y. Shin, Code optimization for DNA computing of maximal cliques, in Advances in Soft Computing—Engineering and Design, Springer, Berlin, 1998.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Immanuel M. Bomze
    • 1
  • Marco Budinich
    • 2
  • Panos M. Pardalos
    • 3
  • Marcello Pelillo
    • 4
  1. 1.Institut für Statistik, Operations Research und ComputerverfahrenUniversität WienWienAustria
  2. 2.Dipartimento di FisicaUniversità di TriesteTriesteItaly
  3. 3.Center for Applied OptimizationISE Department University of FloridaGainesvilleUSA
  4. 4.Dipartimento di InformaticaUniversità Ca’ Foscari di VeneziaVenezia MestreItaly

Personalised recommendations