The normal microflora as a reservoir of antibiotic resistance determinants

  • Gerald W. Tannock


The complex communities of bacteria that are resident in various body sites are potential crucibles in which the evolution and transfer of genetic determinants encoding antibiotic resistance could occur. Bacterial cells with relatively short generation times, representing many diverse species, coexist in habitats that may be exposed to antibiotics, which act as selective agents for cells containing appropriate genetic determinants of resistance. Antibiotics may be administered to the host for a number of medical or veterinary reasons: (1) to treat an infection, (2) as a prophylactic measure, (3) as a growth promotion measure (farm animals).


Antibiotic Resistance Antibiotic Resistance Gene Environmental Microbiology Resistance Determinant Tetracycline Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, E. S. (1968) The ecology of transferable drug resistance in the enterobacteria. Annual Review of Microbiology, 22, 131–180.PubMedCrossRefGoogle Scholar
  2. Bateup, J., Dobbinson, S., McConnell, M. A. et al. (1998) Molecular analysis of Lactobacillus populations inhabiting the stomach and cecum of pigs. Microbial Ecology in Health and Disease,in press.Google Scholar
  3. Bird, H. R. (1969) Biological basis for the use of antibiotics in poultry feeds, in The Use of Drugs in Animal Feeds, National Academy of Sciences, Washington, DC, pp. 31–41.Google Scholar
  4. Bloom (1992) Back to a frightening future. Nature, 358, 538–539.PubMedCrossRefGoogle Scholar
  5. Courvalin, P. (1994) Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria. Antimicrobial Agents and Chemotherapy, 38, 1447–1451.PubMedCrossRefGoogle Scholar
  6. Elam, J. F., Jacobs, R. L., Fowler, J. and Couch, J. R. (1954) Effect of dietary clostridia upon growth-promoting responses of penicillin Proceedings of the Society for Experimental Biology and Medicine, 85, 645–648.PubMedGoogle Scholar
  7. Ellner, J. J., Hinmans, A. R., Dooley, S. W., Fischl, M. A. et al. (1993) Tuberculosis symposium: emerging problems and promise. Journal of Infectious Diseases, 168, 537–551.PubMedCrossRefGoogle Scholar
  8. Engel, H. W. B., Soedirman, N., Rost, J. A. et al. (1980) Transferability of macrolide, lincomycin, and streptogramin resistances between group A, B, and D streptococci, Streptococcus pneumoniae, and Staphylococcus aureus. Journal of Bacteriology, 142, 407–443.Google Scholar
  9. Eyssen, H. and de Somer, P. (1967) Effects of Streptococcus faecalis and a filterable agent on growth and absorption in gnotobiotic chicks. Poultry Science, 46, 323–333.CrossRefGoogle Scholar
  10. Feighner, S. D. and Dashkevicz, M. P. (1987) Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholyltaurine hydrolase activity. Applied and Environmental Microbiology, 53, 331–336.PubMedGoogle Scholar
  11. Feighner, S. D. and Dashkevicz, M. P. (1988) Effect of dietary carbohydrates on bacterial cholyltaurine hydrolase in poultry intestinal homogenates. Applied and Environmental Microbiology, 54, 337–342.PubMedGoogle Scholar
  12. Fuller, R., Coates, M. E. and Harrison, G. F. (1979) The influence of specific bacteria and a filterable agent on the growth of gnotobiotic chicks. Journal of Applied Bacteriology, 46, 335–342.CrossRefGoogle Scholar
  13. Gasson, M. J. and Davies, F. L. (1980) Conjugal transfer of the drug resistantGoogle Scholar
  14. plasmid pAMß1 in the lactic streptococci. FEMS Microbiology Letters,7, 51–53.Google Scholar
  15. Gillespie, S. H. and McHugh, T. D. (1997) The biological cost of antimicrobial resistance. Trends in Microbiology, 5, 337–339.PubMedCrossRefGoogle Scholar
  16. Gryczan, T., Israeli-Reches, M., Del Blue, M. and Dubnau, B. (1984) DNA sequence and regulation of ermD, a macrolide—lincosamide—streptogramin B resistance element from Bacillus licheniformis. Molecular and General Genetics, 194, 349–356.CrossRefGoogle Scholar
  17. Hachler, H., Berger-Bachi, B. and Kayer, F. H. (1987) Genetic characterization of a Clostridium difficile erythromycin—clindamycin resistance determinant that is transferrable to Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 31, 1039–1045.CrossRefGoogle Scholar
  18. Havelaar, A. H. (1993) Bacteriophages as models of human enteric viruses in the environment. American Society for Microbiology News, 58, 614–619.Google Scholar
  19. Hespell, R. B. and Whitehead, T. R. (1991) Conjugal transfer of Tn916, Tn916E, and pAMß1 from Enterococcus faecalis to Butyrivibrio fibrisolvens strains. Applied and Environmental Microbiology, 57, 2703–2709.PubMedGoogle Scholar
  20. Holmberg, S. D., Wells, J. G. and Cohen, M. L. (1984) Animal-to-man transmission of antimicrobial-resistant Salmonella: investigation of US outbreaks, 1971–1983. Science, 225, 833–835.PubMedCrossRefGoogle Scholar
  21. Holmberg, S. D., Osterholm, M. T., Senger, K. A. and Cohen, M. L. (1984) Drug-resistant Salmonella from animals fed antimicrobials. New England Journal of Medicine, 311, 617–622.PubMedCrossRefGoogle Scholar
  22. Horinouchi, S. and Weisblum, B. (1982) Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin B type antibiotics. Journal of Bacteriology, 150, 804–814.PubMedGoogle Scholar
  23. Horinouchi, S., Byeon, W.-H. and Weisblum, B. (1983) A complex attenuator regulates inducible resistance to macrolides, lincosamides, and streptogramin type B antibiotics in Streptococcus sanguis. Journal of Bacteriology, 154, 1252–1262.Google Scholar
  24. Houghton, S. B., Fuller, R. and Coates, M. E. (1981) Correlation of growth depression of chicks with the presence of Streptococcus faecium in the gut. Journal of Applied Bacteriology, 51, 113–120.PubMedCrossRefGoogle Scholar
  25. Iwata, M. (1988) Characterization of a pAMI31 deletion derivative isolated from Lactobacillus casei after conjugation. Biochimie, 70, 553–558.PubMedCrossRefGoogle Scholar
  26. Jorgensen, J. H., Doern, G. V., Maher, L. A. et al. (1990) Antimicrobial resistance among respiratory isolates of Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae in the United States. Antimicrobial Agents and Chemotherapy, 34, 2075–2080.PubMedCrossRefGoogle Scholar
  27. Kaufmann, S. H. E. and van Embden, J. D. A. (1993) Tuberculosis: a neglected disease strikes back. Trends in Microbiology, 1, 2–5.PubMedCrossRefGoogle Scholar
  28. Klieve, A. V. and Bauchop, T. (1988) Morphological diversity of ruminai bacteriophages from sheep and cattle. Applied and Environmental Microbiology, 54, 1637–1641.PubMedGoogle Scholar
  29. Knapp, J. S., Johnson, S. R., Zenilman, J. M. et al. (1988) High-level tetracycline resistance resulting from tetM in strains of Neisseria spp., Kingella denitrificans, and Eikenella corrodens. Antimicrobial Agents and Chemotherapy, 32, 765–767.CrossRefGoogle Scholar
  30. Lampson, B. C. and Parisi, J. T. (1986) Nucleotide sequence of the constitutive macrolide—lincosamide—streptogramin B resistance plasmid pNE131 from Staphylococcus epidermidis and homologies with Staphylococcus aureus plasmids pE194 and pSN2. Journal of Bacteriology, 167, 888–892.PubMedGoogle Scholar
  31. LeBlanc, D. J. and Hassell, F. P. (1976) Transformation of Streptococcus sanguis Challis by plasmid deoxyribonucleic acid from Streptococcus faecalis. Journal of Bacteriology, 128, 347–355.Google Scholar
  32. LeBlanc, D. J. and Lee, L. N. (1984) Physical and genetic analysis of streptococcal plasmid pAM(31 and cloning of its replication region. Journal of Bacteriology, 157, 445–453.PubMedGoogle Scholar
  33. Levy, S. B. (1992) The Antibiotic Paradox. How Miracle Drugs are Destroying the Miracle, Plenum Press, New York.Google Scholar
  34. Levy, S. B., Fitzgerald, G. B. and Macone, A. B. (1976) Spread of antibiotic-resistance plasmids from chicken and from chicken to man. Nature, 260, 40–42.PubMedCrossRefGoogle Scholar
  35. Linton, A. H. (1976) Antibiotics, animals and man — an appraisal of a contentious subject, in Antibiotics and Antibiosis in Agriculture, (ed. M. Woodbine ), Butter-worths, London, pp. 315–343.Google Scholar
  36. McConnell, M. A., Mercer, A. A. and Tannock, G. W. (1991) Transfer of plasmid pAM01 between members of the normal microflora inhabiting the murine digestive tract and modification of the plasmid in a Lactobacillus reuteri host. Microbial Ecology in Health and Disease, 4, 343–355.CrossRefGoogle Scholar
  37. McDonald, L. C., Kuehnert, M. J., Tenover, F. C. and Jarvis, W. R. (1997) Vancomycin-resistant enterococci outside the health-care setting: prevalence, sources, and public health implications. Emerging Infectious Diseases, 3, 311–317.PubMedCrossRefGoogle Scholar
  38. Marshall, B., Petrowski, D. and Levy, S. B. (1990) Inter-and intraspecies spread of Escherichia coli in a farm environment in the absence of antibiotic usage. Proceedings of the National Academy of Sciences of the USA, 87, 6609–6613.PubMedCrossRefGoogle Scholar
  39. Martin, B., Alloing, G., Mejean, V. and Claverys, J-P. (1987) Constitutive expression of erythromycin resistance mediated by the ermAM determinant of plasmid pAMß1 results from deletion of 5’ leader peptide sequences. Plasmid, 18, 250–253.PubMedCrossRefGoogle Scholar
  40. Morse, S. A., Johnson, S. R., Biddle, J. W. and Roberts, M. C. (1986) High-level tetracycline resistance in Neisseria gonorrhoeae is result of acquisition of streptococcal tetM determinant. Antimicrobial Agents and Chemotherapy, 30, 664–670.PubMedCrossRefGoogle Scholar
  41. Mullany, P., Wilks, M., Lamb, I. et al. (1990) Genetic analysis of a tetracycline resistance element from Clostridium difficile and its conjugal transfer to and from Bacillus subtilis. Journal of General Microbiology, 136, 1343–1349.Google Scholar
  42. Murphy, E. (1985) Nucleotide sequence ermA, a macrolide—lincosamide—streptogramin B determinant in Staphylococcus aureus. Journal of Bacteriology, 162, 633–640.Google Scholar
  43. Oultram, J. D. and Young, M. (1985) Conjugal transfer of plasmid pAMß1 from Streptococcus lactis and Bacillus subtilis to Clostridium acetobutylicum. FEMS Microbiology Letters, 27, 129–134.Google Scholar
  44. Rasmussen, J. L., Odelson, D. A. and Macrina, F. L. (1986) Complete nucleotide sequence and transcription of ermF, a macrolide—lincosamide—streptogramin B resistance determinant from Bacteroides fragilis. Journal of Bacteriology, 168, 523–533.Google Scholar
  45. Raya, R. R. and Klaenhammer, T. R. (1992) High-frequency transduction by Lactobacillus gasseri bacteriophage (1)adh. Applied and Environmental Microbiology, 58, 187–193.PubMedGoogle Scholar
  46. Roberts, M. C. and Hillier, S. L. (1990) Genetic basis of tetracycline resistance in urogenital bacteria. Antimicrobial Agents and Chemotherapy, 34, 261–264.PubMedCrossRefGoogle Scholar
  47. Roberts, M. C. and Kenny, G. E. (1986) Dissemination of the tetM tetracycline resistance determinant to Ureaplasma urealyticum. Antimicrobial Agents and Chemotherapy, 29, 350–352.CrossRefGoogle Scholar
  48. Roberts, M. C. and Monda, B. (1988) Tetracycline resistance and tetM in oral anaerobic bacteria and Neisseria perflava—N. sicca. Antimicrobial Agents and Chemotherapy, 32, 1271–1273.CrossRefGoogle Scholar
  49. Roberts, M. C., Koutsky, L. A., Holmes, K. K. et al. (1985) Tetracycline-resistant Mycoplasma hominis strains contain streptococcal tetM sequences. Antimicrobial Agents and Chemotherapy, 28, 141–143.PubMedCrossRefGoogle Scholar
  50. Salyers, A. A. (1995) Antibiotic Resistance Transfer in the Mammalian Intestinal Tract: Implications for Human Health, Food Safety and Biotechnology, Molecular Biology Intelligence Unit, R. G. Landes Company, Austin, TX.Google Scholar
  51. Salyers, A. A., Speer, B. S. and Shoemaker, N. B. (1990) New perspectives in tetracycline resistance. Molecular Microbiology, 4, 151–156.PubMedCrossRefGoogle Scholar
  52. Serworld-Davis, T. M. and Groman, M. B. (1988) Identification of a methylase gene for erythromycin resistance within the sequence of a spontaneously deleting fragment of Corynebacterium diphtheriae plasmid pNG2. FEMS Microbiology Letters, 56, 7–14.CrossRefGoogle Scholar
  53. Shrago, A. W., Chassy, B. M. and Dobrogosz, W. J. (1986) Conjugal plasmid transfer (pAMß1) in Lactobacillus plantarum. Applied and Environmental Microbiology, 52, 574–576.Google Scholar
  54. Simon, C., Stille, W. and Wilkinson, P. J. (1985). Antibiotic Therapy in Clinical Practice, F. K. Schattauer Verlag, Stuttgart.Google Scholar
  55. Smith, C. J. (1987) Nucleotide sequence analysis of Tn4551: use of ermFS operon fusions to detect promoter activity in Bacteroides fragilis. Journal of Bacteriology, 169, 4589–4596.Google Scholar
  56. Speer, B. S., Shoemaker, N. B. and Salyers, A. A. (1992) Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clinical Microbiology Reviews, 5, 387–399.PubMedGoogle Scholar
  57. Spika, J. S., Waterman, S. H., Soo Hoo, G. W. et al. (1987) Chloramphenicolresistant Salmonella newport traced through hamburger to dairy farms. New England Journal of Medicine, 316, 566–570.CrossRefGoogle Scholar
  58. Swartz, M. N. (chairman) (1989) Report of a Study: Human Health Risks with the Subtherapeutic Use of Penicillin or Tetracyclines in Animal Feed, National Academy Press, Washington, DC.Google Scholar
  59. Tannock, G. W. (1987) Conjugal transfer of plasmid pAM(31 in Lactobacillus reuteri and between lactobacilli and Enterococcus faecalis. Applied and Environmental Microbiology, 53, 2693–2695.Google Scholar
  60. Tannock, G. W., Luchansky, J. B., Miller, L. et al. (1994) Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacillus reuteri 100–63. Plasmid, 31, 60–71.PubMedCrossRefGoogle Scholar
  61. Trieu-Cuot, P., Arthur, M. and Courvalin, P. (1987) Origin, evolution and dissemination of antibiotic resistance genes. Microbiological Sciences, 4, 263–266.PubMedGoogle Scholar
  62. Uchiyama, H. and Weisblum, B. (1985) N-methyl transferase of Streptomyces erythraeus that confers resistance to the macrolide—lincosamide—streptogramin B antibiotics: amino acid sequence and its homology to cognate R-factor enzymes from pathogenic bacilli and cocci. Genetics, 38, 103–110.Google Scholar
  63. Uttley, A. H. C., Collins, C. H., Naidoo, J. and George, R. C. (1988) Vancomycinresistant enterococci. Lancet, i, 57–58.Google Scholar
  64. Van der Lelie, E. and Venema, G. (1987) Bacillus subtilis generates a major specific deletion in pAMß1. Applied and Environmental Microbiology, 53, 2458–2463.Google Scholar
  65. Vescovo, M., Morelli, L., Bottazzi, V. and Gasson, M. J. (1983) Conjugal transfer of broad-host-range plasmid pAMß1 into enteric species of lactic acid bacteria. Applied and Environmental Microbiology, 46, 753–755.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Gerald W. Tannock

There are no affiliations available

Personalised recommendations