Medical Importance of the Normal Microflora pp 371-387 | Cite as
The normal microflora and antibiotic-associated diarrhoea and colitis
Abstract
Normal gut structure and function is the end-product of a complex set of interactions between the host and the complex microflora that inhabits the gastrointestinal tract. This balanced interaction is subjected both directly and indirectly to environmental influences, such as dietary factors, which can affect gut function directly through effects on the host or indirectly by effects on the gut microflora. In many cases these are an interactive loop of cause and effect whereby changes to the host alter the gut microflora, which in turn influences gut function. The ‘environmental’ factor that is most likely to have a significant direct impact on the gut microflora is antibiotic treatment.
Keywords
Bile Acid Clostridium Difficile Infection Clostridium Difficile Pseudomembranous Colitis Secondary Bile AcidPreview
Unable to display preview. Download preview PDF.
References
- Abrams, G. D. and Bishop, J. E. (1966) Effect of the normal microbial flora on the resistance of the small intestine to infections. Journal of Bacteriology, 92, 1604–1608.PubMedGoogle Scholar
- Amon, H. V. and Phillips, S. F. (1973) Inhibition of colonic water and electrolyte absorption by fatty acids in man. Gastroenterology, 65, 744–749.Google Scholar
- Bartlett, J. G., Tedesco, F. J., Shull, S. et al. (1980) Symptomatic relapse after oral vancomycin therapy of antibiotic-associated pseudomembranous colitis. Gastroenterology, 78, 431–434.PubMedGoogle Scholar
- Biller, J. A., Katz. A. J., Flores, A. F. et al. (1995) Treatment of recurrent Clostridium difficile colitis with Lactobacillus GG. Journal of Pediatric Gastroenterology and Nutrition, 21, 224–226.PubMedCrossRefGoogle Scholar
- Binder, H. J. and Rawlins, C. L. (1973) Effect of conjugated bile salts on electrolyte ransport in rat colon. Journal of Clinical Investigation, 52, 1460–1466.PubMedCrossRefGoogle Scholar
- Borriello, S. P. (1984a) Bacteria and gastrointestinal secretion and motility. Scandinavian Journal of Gastroenterology, 19 (Suppl. 93), 115–121.Google Scholar
- Borriello, S. P. (ed.) (1984b) Antibiotic-Associated Diarrhoea and Colitis. Martinus Nijhoff, Boston, MA.Google Scholar
- Borriello, S. P. (1989) Influence of the normal gut flora of the gut on Clostridium ifficile, in The Regulatory and Protective Role of the Normal Microflora, (eds. Grubb, T. Midtvedt and E. Norrin ), Macmillan, Basingstoke, pp 239–251.Google Scholar
- Borriello, S. P. (1990) Pathogenesis of Clostridium difficile infection of the gut. ournal of Medical Microbiology, 33, 207–215.Google Scholar
- Borriello, S. P. (1992) Possible mechanisms of action of antimicrobial agent-associated gastrointestinal symptoms. Postgraduate Medical Journal, 68 (Suppl. 3), S38 — S42.PubMedGoogle Scholar
- Borriello, S. P. (1998) Pathogenesis of Clostridium difficile infection. Journal of Antimicrobial Chemotherapy,in press.Google Scholar
- Borriello, S. P. and Barclay, F. E. (1985) Protection of hamsters against Clostridium difficile ileocaecitis by prior colonisation with non-pathogenic strains. Journal of Medical Microbiology, 19, 339–349.PubMedCrossRefGoogle Scholar
- Borriello, S. P. and Barclay, F. E. (1986) An in-vitro model of colonisation resistance to Clostridium difficile infection. Journal of Medical Microbiology, 21, 299–309.PubMedCrossRefGoogle Scholar
- Borriello, S. P. and Carman, R. J. (1988) Other clostridial causes of diarrhoea and colitis in man and animals, in Clostridium difficile: Its Role in Intestinal Disease, (eds R. D. Rolfe and S. M. Finegold ), Academic Press, San Diego, CA, pp. 65–98.Google Scholar
- Borriello, S. P., Barclay, F. E. and Welch, A. R. (1988) Evaluation of the predictive capability of an in-vitro model of colonisation resistance to Clostridium difficile infection. Microbiology Ecology in Health and Disease, 1, 61A.CrossRefGoogle Scholar
- Borriello, S. P., Larson, H. E., Welch, A. R. et al. (1984) Enterotoxigenic Clostridium perfringens: a possible cause of antibiotic-associated diarrhoea. Lancet, i, 305–307.Google Scholar
- Borriello, S. P., Barclay, F. E., Welch, A. R. et al. (1985a) Host and microbial determinants of the spectrum of Clostridium difficile mediated gastrointestinal disorders. Microecology and Therapy, 15, 231–236.Google Scholar
- Borriello, S. P., Barclay, F. E., Welch, A. R. et al. (1985b) Epidemiology of diarrhoea caused by enterotoxigenic Clostridium perfringens. Journal of Medical Microbiology, 20, 363–372.CrossRefGoogle Scholar
- Boureau, H., Salanon, C., Decaaens, C. and Bourlioux, P. (1994) Caecal localisation of the specific microbiota resistant to Clostridium difficile colonisation in gnotobiotic mice. Microbial Ecology in Health and Disease, 7, 111–117.CrossRefGoogle Scholar
- Bowden, T. A., Mansberger, A. R. and Lykins, L. E. (1981) Pseudomembranous enterocolitis: mechanism of restoring flora homeostasis. American Surgeon, 47, 178–183.PubMedGoogle Scholar
- Bright-Asare, P. and Binder, H. J. (1973) Stimulation of colonic secretion of water and electrolytes by hydroxy fatty acids. Gastroenterology, 64, 81–88.PubMedGoogle Scholar
- Buts, J.-P., Corthier, G. and Delmee, M. (1993) Saccharomyces boulardii for Clostridium difficile associated enteropathies in infants. Journal of Pediatric Gastroenterology and Nutrition, 16, 419–425.Google Scholar
- Cano, N., Chapoy, P. and Corthier, G. (1989) Saccharomyces boulardii: un traitment des colites pseudomembraneuses? Presse Medicale, 18, 1299.Google Scholar
- Castagliuolo, I., LaMont, J. T., Nikulasson, S. T. and Pothoulakis, C. (1996) Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infection and Immunity, 64, 5225–5232.Google Scholar
- Cherry, R. D., Portnoy, D., Jabbari, M. et al. (1982) Metronidazole: an alternative therapy for antibiotic-associated colitis. Gastroenterology, 82, 849–851.PubMedGoogle Scholar
- Chia, J. K. S., Chan, S. M. and Goldstein, H. (1995) Baker’s yeast as adjunctive therapy for relapses of Clostridium difficile diarrhoea. Clinical Infectious Diseases, 20, 1581.PubMedCrossRefGoogle Scholar
- Clausen, M. R., Bronnen, H., Tvede, M. and Mortensen, P. B. (1991) Colonic fermentation to short-chain fatty acids is decreased in antibiotic-associated diarrhoea. Gastroenterology, 101, 1497–1504.PubMedGoogle Scholar
- Corthier, G. Dubos, F. and Ducluzeau, R. (1986) Prevention of Clostridium difficile mortality in gnotobiotic mice by Saccharomyces boulardii. Canadian Journal of Microbiology, 32, 894–896.Google Scholar
- Corthier, G. Dubos, F. and Raibaud, P. (1985) Modulation of cytotoxin production by Clostridium difficile in the intestinal tracts of gnotobiotic mice inoculated with various human intestinal bacteria. Applied and Environmental Microbiology, 49, 250–252.PubMedGoogle Scholar
- Dubos, F., Martinet, L., Dabard, J. and Ducluzeau, R. (1984) Immediate postnatal inoculation of a microbial barrier to prevent neonatal diarrhoea induced by Clostridium difficile in young conventional and gnotobiotic hares. American Journal of Veterinary Research, 45, 1241–1244.Google Scholar
- Ducluzeau, R., Dubos, F., Hudault, S. et al. (1981) Microbial barriers against enteropathogenic strains in the digestive tract of gnotoxenic animals. Application to the treatment of Clostridium difficile diarrhoea in the young hare, in Recent dvances in Germ free Research, (eds A. Sasaki, K. Ozawa and K. Hashimoto ), Tokai University Press, Tokyo.Google Scholar
- Eisemann, B., Silem, W., Bascomb, W. S. and Kanvor, A. J. (1958) Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery, 44, 854–858.Google Scholar
- Gorbach, S. L., Chang, T.-W. and Goldin, B. (1987) Successful treatment of relapsing Clostridium difficile colitis with Lactobacillus GG. Lancet, ii, 1519.Google Scholar
- Gracy, M., Papadimitriou, J. and Bower, G. (1974) Ultrastructural changes in the mall intestine of rats with self-filling blind loops. Gastroenterology, 67, 646–651.Google Scholar
- Hofmann, A. F. (1967) The syndrome of ileal disease and the broken enterohepatic irculation: cholerheic enteropathy. Gastroenterology, 52, 752–757.PubMedGoogle Scholar
- Itoh, K., Lee, W. K., Kawamura, H. et al. (1987) Intestinal bacteria antagonistic to Clostridium difficile in mice. Laboratory Animal, 21, 20–25.CrossRefGoogle Scholar
- James, AT., Webb, J. P. W. and Kellock, T. D. (1961) The occurrence of unusual fatty acids in faecal lipids from human beings with normal and abnormal fat absorption. Biochemical Journal, 78, 333–339.PubMedGoogle Scholar
- Keighley, M. R. B., Burdon, D. W., Arabi, Y. et al. (1978) Randomised controlled trial of vancomycin for pseudomembranous colitis and post-operative diarrhoea. British Medical Journal, ii, 1667–1669.Google Scholar
- Kimmey, M. B., Elmer, G. W., Surawicz, C. M. and McFarland, L. V. (1990) Prevention of further recurrences of Clostridium difficile colitis with Saccharomyces boulardii. Digestive Diseases and Sciences, 35, 897–901.CrossRefGoogle Scholar
- Kirwan, W. O., Smith, A. N., Mitchell, W. D. et al. (1975) Bile acids and colonic otility in the rabbit and the human. Part 1. The rabbit. Gut, 16, 894–902.PubMedCrossRefGoogle Scholar
- Larson, H. E. and Borriello, S. P. (1988) Infectious diarrhoea due to Clostridium perfringens. Journal of Infectious Diseases, 157, 390–391.Google Scholar
- Larson, H. E. and Borriello, S. P. (1990) Quantitative study of antibiotic induced susceptibility to Clostridium difficile enterocolitis in hamsters. Antimicrobial Agents and Chemotherapy, 34, 1348–1353.PubMedCrossRefGoogle Scholar
- Larson, H. E., Price, A. B. and Borriello, S. P. (1980) Epidemiology of experimental enterocecitis due to Clostridium difficile. Journal of Infectious Diseases, 142, 408–413.Google Scholar
- Larson, H. E., Barclay, F. E., Honour, P. and Hill I. D. (1982) Epidemiology of Clostridium difficile in infants. Journal of Infectious Diseases, 146, 727–733.PubMedCrossRefGoogle Scholar
- Lewis, S. J., Potts, L. F. and Barry, R. E. (1998) The therapeutic effects of Saccharomyces boulardii in the prevention of antibiotic related-diarrhoea in elderly patients. Journal of Hospital Infection,36, in press.Google Scholar
- Libby, J. M., Donta, S. T. and Wilkins, T. D. (1983) Clostridium difficile toxin A in infants. Journal of Infectious Diseases, 148, 606.Google Scholar
- Lyerly, D. M., Krivan, H. E. and Wilkins, T. D. (1988) Clostridium difficile its disease and toxins. Clinical Microbiology Reviews,1–18.Google Scholar
- McFarland, L. V. and Bernasconi, P. (1993) Saccharomyces boulardii: a review of an innovative biotherapeutic agent. Microbial Ecology in Health and Disease, 6, 157–171.Google Scholar
- McFarland, L. V., Surawicz, C. M., Greenberg, R. N. et al. (1994) A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. Journal of the American Medical Association, 271, 1913–1918.PubMedCrossRefGoogle Scholar
- Mekhjian, H. S., Phillips, S. F. and Hofmann, A. F. (1971) Colonic secretion of water and electrolytes induced by bile acids: perfusion studies in man. Journal of Clinical Investigation, 50, 1569–1577.CrossRefGoogle Scholar
- Pen, J. and Welling, G. W. (1981) The concentration of cholecystokinin in the intestinal tract of germ-free and control mice. Antonie van Leeuwenhoek, 47, 84–85.PubMedCrossRefGoogle Scholar
- Pothoulakis, C., Kelly, C. P., Joshi, M. A. et al. (1993) Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterology, 104, 1108–1115.Google Scholar
- Raibaud, P., Ducluzeau R., Dubos, F. et al. (1980) Implantation of bacteria from the digestive tract of man and various animals into gnotobiotic mice. American Journal of Clinical Nutrition, 33, 2440–2447.PubMedGoogle Scholar
- Rolfe, R. D. (1984) Role of volatile fatty acids in colonisation resistance to Clostridium difficile. Infection and Immunity, 45, 185–191.Google Scholar
- Rolfe, R. D. and Finegold, S. M. (eds) (1988) Clostridium difficile: Its Role in Intestinal Disease. Academic Press, San Diego, CA.Google Scholar
- Schellenberg, D., Bonington, A., Champion, C. M. et al. (1994) Treatment of relapsing Clostridium difficile diarrhoea with brewer’s yeast. Lancet, 343, 171–172.PubMedCrossRefGoogle Scholar
- Schwan, A., Sjolin, S., Trottestam, U. and Aronsson, B. (1984) Relapsing Clostridium difficile enterocolitis cured by rectal infusion of normal faeces. Scandinavian Journal of Infectious Diseases, 16, 211–215.PubMedCrossRefGoogle Scholar
- Seal, D. V., Borriello, S. P., Barclay, F. et al. (1987) Treatment of relapsing Clostridium difficile diarrhoea by administration of a non-toxigenic strain. European Journal of Clinical Microbiology, 6, 51–53.PubMedCrossRefGoogle Scholar
- Seddon, S. V., Hemingway, I. and Borriello, S. P. (1990) Hydrolytic enzyme production by Clostridium difficile and its relationship to toxin production and virulence in the hamster model. Journal of Medical Microbiology, 31, 169–174.PubMedCrossRefGoogle Scholar
- Surawicz, C. M., Elmer, G. M., Speelman, P. et al. (1989a) Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a prospective study. Gastroenterology, 96, 981–988.PubMedGoogle Scholar
- Surawicz, C. M., McFarland, L. V., Elmer, G. W. and Chirm, J. (1989b) Treatment of recurrent Clostridium difficile colitis with vancomycin and Saccharomyces boulardii. American Journal of Gastroenterology,84 1285–1287.Google Scholar
- Siitonen, S., Vapaatalo, H., Salminen, S. et al. (1990) Effect of Lactobacillus GG yoghurt in prevention of antibiotic associated diarrhoea. Annals of Medicine, 22, 57–59.PubMedCrossRefGoogle Scholar
- Toothaker, R. D. and Elmer, G. W. (1984) Prevention of clindamycin-induced mortality in hamsters by Saccharomyces boulardii. Antimicrobial Agents and Chemotherapy, 26, 552–556.CrossRefGoogle Scholar
- Tvede, M. and Rask-Maden, J. (1989) Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet,i 1156–1160.Google Scholar
- Wilcox, H. M. and Spencer, R. C. (1992) Clostridium difficile infection: responses, relapses and re-infections. Journal of Hospital Infection, 22, 85–92.Google Scholar
- Williams, R., Piper, M., Borriello, S. P. et al. (1985) Diarrhoea due to enterotoxigenic Clostridium perfringens: clinical features and management of a cluster often cases. Age and Ageing, 14, 296–302.PubMedCrossRefGoogle Scholar
- Wilson, K. H. and Freter, R. (1986) Interaction of Clostridium difficile and Escherichia coli with microfloras in continuous-flow cultures and gnotobiotic mice. Infection and Immunity, 54, 354–358.PubMedGoogle Scholar
- Wilson, K. H. and Perini, F. (1988) Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infection and Immunity, 56, 2610–2614.PubMedGoogle Scholar
- Wilson, K. H. and Sheagren, J. N. (1983) Antagonism of toxigenic Clostridium difficile by non-toxigenic C. difficile. Journal of Infectious Diseases,147 733–736.Google Scholar
- Wilson, K. H., Silva, J. and Fekety, R. F. (1981) Suppression of Clostridium difficile by normal hamster cecal flora and prevention of antibiotic-associated cecitis. Infection and Immunity, 34, 626–628.Google Scholar
- Wilson, K. H., Sheagren, J. N., Freter, R. et al. (1986) Gnotobiotic models for study of the microbial ecology of Clostridium difficile and Escherichia coli. Journal of Infectious Diseases,153 547–551.Google Scholar