Skip to main content

Involvement of B-Cells in Peripheral Scrapie Pathogenesis

  • Chapter
Risk Management in Blood Transfusion: The Virtue of Reality

Part of the book series: Developments in Hematology and Immunology ((DIHI,volume 34))

  • 79 Accesses

Abstract

Prion diseases or transmissible spongiform encephalopathies (TSE) are neurological disorders caused by transmissible pathogens termed prions [1,2]. While the prototype of all prion diseases, scrapie in sheep and goats, has been known for more than two centuries, a new form of animal prion disease designated bovine spongiform encephalopathy (BSE) has since its first recognition in 1986 developed into an epizootic [7,8]. The emergence of a new variant form of Creutzfeldt-Jakob disease (nvCJD) in young people in the UK has raised the possibility that BSE has spread to humans by dietary exposure [9,10]. This fearful scenario has recently been supported by experimental evidence claiming that the agent causing BSE is indistinguishable from the nvCJD agent [3,4, 11,12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gajdusek DC, Gibbs CJ, Alpers M. Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 1966;209:794–96.

    Article  PubMed  CAS  Google Scholar 

  2. Gibbs CJ Jr, Asher DM, Brown PW, Fradkin JE, Gajdusek DC. Creutzfeldt-Jakob disease infectivity of growth hormone derived from human pituitary glands. N Engl J Med 1993;328:358–59.

    Article  PubMed  Google Scholar 

  3. Hill AF, Desbruslais M, Joiner S, et al. The same prion strain causes nvCJD and BSE [letter] [see comments]. Nature 1997;389:448–50.

    Article  PubMed  CAS  Google Scholar 

  4. Bruce ME, Will RG, Ironside JW. et al. Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent [see comments]. Nature 1997;389:498–501.

    Article  PubMed  CAS  Google Scholar 

  5. Kitamoto T, Muramoto T, Mohri S, Dohura K, Tateishi J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease. J Virol 1991;65:6292–95.

    PubMed  CAS  Google Scholar 

  6. Lasmezas CI, Cesbron JY, Deslys JP, et al. Immune system-dependent and -independent replication of the scrapie agent. J Virol 1996;70:1292–95.

    PubMed  CAS  Google Scholar 

  7. Wilesmith J-W, Ryan JB, Hueston WD, Hoinville LJ. Bovine spongiform encephalopathy: epidemiological features 1985 to 1990. VetRec 1992;130:90–94.

    CAS  Google Scholar 

  8. Anderson RM, Donnelly CA, Ferguson NM, et al. Transmission dynamics and epidemiology of BSE in British cattle. Nature 1996;382:779–88.

    Article  PubMed  CAS  Google Scholar 

  9. Will RG, Ironside JW, Zeidler M, et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 1996;347:921–25.

    Article  PubMed  CAS  Google Scholar 

  10. Chazot G, Broussolle E, Lapras C, Blattler T, Aguzzi A, Kopp N. New variant of Creutzfeldt-Jakob disease in a 26-year-old French man [letter]. Lancet 1996;347: 1181.

    Article  PubMed  CAS  Google Scholar 

  11. Aguzzi A. Weissmann C. Spongiform encephalopathies: a suspicious signature. Nature 1996;383:666–67.

    Article  PubMed  CAS  Google Scholar 

  12. Aguzzi A. Between cows and monkeys. Nature 1996:381:734.

    Article  PubMed  CAS  Google Scholar 

  13. Bolton DC, McKinley MP, Prusiner SB. Identification of a protein that purifies with the scrapie prion. Science 1982;218:1309–11.

    Article  PubMed  CAS  Google Scholar 

  14. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science 1982; 216:136–44.

    Article  PubMed  CAS  Google Scholar 

  15. Chesebro B., Race R, Wehrly K, et al. Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature 1985;315:331–33.

    Article  PubMed  CAS  Google Scholar 

  16. Oesch B, Westaway D, Walchli M, et al. A cellular gene encodes scrapie PrP 27–30 protein. Cell 1985;40:735–46.

    Article  PubMed  CAS  Google Scholar 

  17. Basler K, Oesch B, Scott M, et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 1986;46:417–28.

    Article  PubMed  CAS  Google Scholar 

  18. Hsiao K, Baker HF, Crow TJ, et al. Linkage of a prion protein missense variant to Gerstmann-Straussler syndrome. Nature 1989;338:342–45.

    Article  PubMed  CAS  Google Scholar 

  19. Prusiner SB. Prion diseases and the BSE crisis. Science 1997,278:245–51.

    Article  PubMed  CAS  Google Scholar 

  20. Aguzzi A, Weissmann C. Prion research: the next frontiers. Nature 1997;389:795–98.

    Article  PubMed  CAS  Google Scholar 

  21. Kimberlin RE., Wilesmith JW. Bovine spongiform encephalopathy. Epidemiology, low dose exposure and risks. Ann N Y Acad Sci 1994;724:210–20.

    Article  PubMed  CAS  Google Scholar 

  22. Wells GA, Scott AC, Johnson CT, et al. A novel progressive spongiform encephalopathy in cattle. Vet Rec 1987;121:419–20.

    Article  PubMed  CAS  Google Scholar 

  23. Kimberlin RH, Walker CA. Pathogenesis of mouse scrapie: effect of route of inoculation on infectivity titres and dose-response curves. J Comp Pathol 1978;88: 39–47.

    Article  PubMed  CAS  Google Scholar 

  24. Scott JR, Foster JD, Fraser H. Conjunctival instillation of scrapie in mice can produce disease. Vet Microbiol 1993;34:305–9.

    Article  PubMed  CAS  Google Scholar 

  25. Duffy P, Wolf J, Collins G, DeVoe AG, Streeten B, Cowen D. Possible person-to-person transmission of Creutzfeldt-Jakob disease. N Engl J Med 1974;290:692–93.

    PubMed  CAS  Google Scholar 

  26. Fraser H. Neuronal spread of scrapie agent and targeting of lesions within the retino-tectal pathway. Nature 1982;295:149–50.

    Article  PubMed  CAS  Google Scholar 

  27. Eklund CM, Kennedy RC, Hadlow WJ. Pathogenesis of scrapie virus infection in the mouse. J Infect Dis 1967;117:15–22.

    Article  PubMed  CAS  Google Scholar 

  28. Kimberlin RH, Walker CA. Pathogenesis of scrapie in mice after intragastric infection. Virus Res 1989;12:213–20.

    Article  PubMed  CAS  Google Scholar 

  29. Hill AF, Zeidler M, Ironside J, Collinge J. Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet 1997;349:99–100.

    Article  PubMed  CAS  Google Scholar 

  30. Fraser H, Farquhar CF. Ionising radiation has no influence on scrapie incubation period in mice. Vet Microbiol 1987; 13:211–23.

    Article  PubMed  CAS  Google Scholar 

  31. Muramoto T, Kitamoto T, Hoque MZ, Tateishi J, Goto I. Species barrier prevents an abnormal isoform of prion protein from accumulating in follicular dendritic cells of mice with Creutzfeldt-Jakob disease. J Virol 1993;67:6808–10.

    PubMed  CAS  Google Scholar 

  32. Shinkai Y, Rathbun G, Lam KP, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992;68:855–67.

    Article  PubMed  CAS  Google Scholar 

  33. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992;68:869–77.

    Article  PubMed  CAS  Google Scholar 

  34. Huang S, Hendriks W, Althage A, et al. Immune response in mice that lack the interferon-gamma receptor. Science 1993;259:1742–45.

    Article  PubMed  CAS  Google Scholar 

  35. Muller U, Steinhoff U, Reis LF, et al. Functional role of type I and type II interferons in antiviral defense. Science 1994;264:1918–21.

    Article  PubMed  CAS  Google Scholar 

  36. Rahemtulla A, Fung Leung WP, Schilham MW, et al. Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature 1991;353:180–84.

    Article  PubMed  CAS  Google Scholar 

  37. Fung Leung WP, Schilham MW, Rahemtulla A, et al. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell 1991;65:443–49.

    Article  PubMed  CAS  Google Scholar 

  38. Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R. Beta 2-microglobulin deficient mice lack CD4–8+ cytolytic T cells. Nature 1990;344: 742–46.

    Article  PubMed  CAS  Google Scholar 

  39. Kagi D, Ledermann B, Burki K, et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994;369:31–37.

    Article  PubMed  CAS  Google Scholar 

  40. Kitamura D, Roes J, Kuhn R, Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 1991;350:423–26.

    Article  PubMed  CAS  Google Scholar 

  41. Fischer M, Rulicke T, Raeber A, et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 1996; 15:1255–64.

    PubMed  CAS  Google Scholar 

  42. Biieler HR, Fischer M, Lang Y, et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 1992;356:577–82.

    Article  Google Scholar 

  43. Biieler HR, Aguzzi A, Sailer A, et al. Mice devoid of PrP are resistant to scrapie. Cell 1993;73:1339–47.

    Article  Google Scholar 

  44. Fraser H, Brown K-L, Stewart K, McConnell I, McBride P, Williams A. Replication of Scrapie in Spleens of Scid Mice Follows Reconstitution With Wild-Type Mouse Bone Marrow. J Gen Virol 1996;77:1935–40.

    Article  PubMed  CAS  Google Scholar 

  45. Nonoyama S, Smith FO, Bernstein ID, Ochs HD. Strain-dependent leakiness of mice with severe combined immune deficiency. J Immunol 1993;150:3817–24.

    PubMed  CAS  Google Scholar 

  46. Bosma MJ, Carroll AM. The SCID mouse mutant: definition, characterization and potential uses. Ann Rev Immunol 1991;9:323–50.

    Article  CAS  Google Scholar 

  47. Eigen M. Prionics or the kinetic basis of prion diseases. Biophys Chem 1996;63:A1–18.

    Article  Google Scholar 

  48. Rothe J, Lesslauer W, Lotscher H, et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 1993;364:798–802.

    Article  PubMed  CAS  Google Scholar 

  49. Le Hir M, Bluethmann H, Kosco-Vilbois ME, et al. Differentiation of follicular dendritic cells and full antibody responses require tumor necrosis factor receptor-1 signaling. J Exp Med 1996;183:2367–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Klein, M.A., Aguzzi, A. (1999). Involvement of B-Cells in Peripheral Scrapie Pathogenesis. In: Sibinga, C.T.S., Alter, H.J. (eds) Risk Management in Blood Transfusion: The Virtue of Reality. Developments in Hematology and Immunology, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3009-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3009-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4822-9

  • Online ISBN: 978-1-4757-3009-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics