Continuum principles

  • Terry Sheppard


It has long been established that the type of failure exhibited in materials is a function, not only of the magnitude of the applied stress or the basic material characteristics, but also of the way in which they are applied. Thus for annealed EC grade aluminium we might expect an elongation of ~30% if tested in tension, of ~400% if cold rolled and several 1000% if extruded. It was Von Karman [1] who first demonstrated the effect of hydrostatic stresses on the mode of yielding when he demonstrated the ductility of marble under the application of high compressive hydrostatic stresses and this has since been confirmed by observing other more typical cases such as notched bars where the ductility appears to be reduced in the presence of high tensile hydrostatic stresses. In both rolling and extrusion the stresses are in each case predominantly compressive and in extrusion are compressive in all three directions.


Deformation Zone Extrusion Process Hydrostatic Stress Direct Extrusion Extrusion Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    von Karman, Th. (1909) Göttinger Nachrichten, Math.-phys. Klasse, 204.Google Scholar
  2. 2.
    Sheppard, T. and Wright, D.S. (1979) Met. Tech, 6, 215.Google Scholar
  3. 3.
    Feltham, P. (1956) Metal Treatment, 23, 440.Google Scholar
  4. 4.
    Siebel, E. and Fangmeier, E. (1931) Mitt. Kais. Wilh. Eisenf, 13, 28.Google Scholar
  5. 5.
    Johnson, W. and Mellor, P.B. (1962) Plasticity for Mechanical Engineers, Van Nostrand, London.Google Scholar
  6. 6.
    Johnson, W. and Kudo, H. (1960) Int. J. Mech. Sci, 1, 57.CrossRefGoogle Scholar
  7. 7.
    Adie, J.F. and Alexander, J.M. (1967) Int. J. Mech. Sci, 9, 349.CrossRefGoogle Scholar
  8. 8.
    Hailing, J. and Mitchell L. (1965) Int. J. Mech. Sci, 7, 227.Google Scholar
  9. 9.
    Hailing, J. and Mitchell L. (1965) Int. J. Prod. Res, 4, 141.CrossRefGoogle Scholar
  10. 10.
    Sheppard, T., McShane, H.B. and Tutcher, M.G. (1978) Powder Met, 21, 47.Google Scholar
  11. 11.
    Thomsen, E.G. (1957) Proc. Conf. Prop. Mat. at High Rates of Strain, I. Mech. E., London.Google Scholar
  12. 12.
    Shabaik, A.H., Kobayashi, S. and Thomson, E.G. (1967) J. Eng. Ind. Trans, ASME, Series B, 89, 343.Google Scholar
  13. 13.
    Iwata, K., Osakada, K. and Fujino, S. (1972) J. Eng. Ind. Trans, ASME, Series B, 94, 397.Google Scholar
  14. 14.
    Nagpal, V. and Altan, T. (1975) Proc. 3rd. NAMRC, 26.Google Scholar
  15. 15.
    Zienkiewicz, O.C. and Godbole, P.N. (1974) Int. J. Num. Meth. Eng, 8, 3.Google Scholar
  16. 16.
    Zienkiewicz, O.C., Jain, P.C. and Onate, E. (1978) Int. J. Solids Struct, 14, 15.CrossRefGoogle Scholar
  17. 17.
    Kato, K., Okada, T., Murota, T. and Itoh, H. (1987) Advanced Technology of Plasticity, (ed. K. Lange) Springer-Verlag, Heidelberg, 523.Google Scholar
  18. 18.
    Sheppard, T. and Bianchi, J.H. (1987) J. Mech. Phys. Sol, 29, 61.Google Scholar
  19. 19.
    Childs, T.H. (1974) Met. Tech, 1, 305.Google Scholar
  20. 20.
    Dawson, P.R. and Thompson, E.G. (1977) in Numerical Modelling of Manufacturing Processes,ASME, PVP-PB-025, 167–182.Google Scholar
  21. 21.
    Norley, J. (1979) Ph.D. Thesis, University of London.Google Scholar
  22. 22.
    Sheppard, T. and Paterson, S.J. (1982) J. Mech. Work. Tech, 4, 39–56.CrossRefGoogle Scholar
  23. 23.
    Akeret, R. (1980) Metal, 34, 737–741.Google Scholar
  24. 24.
    Sheppard, T. and Wood, E.P. (1980) Met. Tech, 7, 58–66.Google Scholar
  25. 25.
    Sheppard, T. and Wood, E.P. (1978) Proc. 17th Int. MTDR Conf., 411(1), Macmillan Co., London.Google Scholar
  26. 26.
    Akeret, R. (1967) J.I.M, 95, 204–211.Google Scholar
  27. 27.
    Lange, G. (1971) Z. Metallkd, 62, 571–579.Google Scholar
  28. 28.
    Lange, G. and Stuwe, H.P. (1971) Z. Metallkd, 62, 580–584.Google Scholar
  29. 29.
    Bishop, J.F.W. (1966) J. Mech. Appl. Math, 9, 236.CrossRefGoogle Scholar
  30. 30.
    Akeret, R. (1968) Aluminium, 44, 412.Google Scholar
  31. 31.
    Stuwe, H.P. (1968) Metall, 22, 1197.Google Scholar
  32. 32.
    Lange, G. (1971) Z. Metallkd, 62, 571.Google Scholar
  33. 33.
    Macey, G.E. and Salim, M. (1988) Proc. 4th International Extrusion Technology Seminar, Chicago, USA, 247.Google Scholar
  34. 34.
    Grasmo, G., (1992) Proc. 5th International Extrusion Technology Seminar, Chicago, USA, 1, 367.Google Scholar
  35. 35.
    Dashwood, R.J. and McShane, H.B. (1996) Proc. 6th International Extrusion Technology Seminar, Chicago, USA, 1, 331.Google Scholar
  36. 36.
    Chenot, J.L. (1992) J. Mat. Proc. Tech, 24, 9.CrossRefGoogle Scholar
  37. 37.
    Castle, A.F. and Sheppard, T. (1976) Met. Tech, 2, 465–475.Google Scholar
  38. 38.
    Carslaw, H.S. and Jaeger, J.C. (1959) Conduction of Heat in Solids, Clarendon, Oxford.Google Scholar
  39. 39.
    Crank, J. (1950) Mathematics of Diffusion, Oxford University Press, London.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Terry Sheppard
    • 1
  1. 1.Department of Product Design and ManufactureBournemouth UniversityBournemouthUK

Personalised recommendations