Applications of the General Theory of Reproducing Kernels

  • Saburou Saitoh
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 3)


In this paper, we present a survey of the contents of the research note [[Sa2]] which was published recently. For the following general applications of the general theory of reproducing kernels:

a new characterization of the adjoint L-kernel of Szegö type, nonharmonic integral transforms,


interpolation problems of Pick-Nevanlinna type,

see the previous research note [[Sal]], which was also dealt with the history of reproducing kernels and the classical reproducing kernels in one complex analysis. {The publication of this survey article was permitted by Addison Wesley Longman Ltd in connection with the original book [[Sa 2]].}


Hilbert Space Integral Equation Heat Equation Image Space Inversion Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. [[Bert]].
    Bertero, M., Linear inverse and ill-posed problems, INFNITC-8812, 19, Gennaio (1988).Google Scholar
  2. [[Bi]].
    Bitsadze, A. V., Integral equations of first kind, World Scientific, Singapore (1995).CrossRefGoogle Scholar
  3. [[Che]].
    Cherednichenko, V. G., Inverse Logarithmic Potential Problem, VSP, Utrecht, The Netherlands (1996).Google Scholar
  4. [[Che]].
    Chui, C. K., An introduction to wavelets, Academic Press, New York (1992).zbMATHGoogle Scholar
  5. [[Co]].
    Corduneanu, C., Integral equations and applications, Cambridge University Press. (1991).Google Scholar
  6. [[D]].
    Daubechies, I., Ten lectures on wavelets, Society for Industrial and Applied Mathematics, Philadelphia (1992).CrossRefzbMATHGoogle Scholar
  7. [[Gr]].
    Groetsch, C. W., Inverse problems in the mathematical sciences, Vieweg Mathematics for Scientists and Engineers, Vieweg (1993).zbMATHGoogle Scholar
  8. [[He]].
    Hejhal, D. A., Theta functions, kernel functions and Abel integrals, Memoirs of Amer. Math. Soc., Providence, R. I. 129 (1972).MathSciNetGoogle Scholar
  9. [[Hi]].
    Higgins, J. R., Sampling theory in Fourier and signal analysis foundations, Oxford Science Publications (1996).Google Scholar
  10. [[I]].
    Isakov, V., Inverse source problems, Mathematical Surveys and Monographs, Number 34, American Mathematical Society, Providence, R. I. (1990).Google Scholar
  11. [[Kon]].
    Kondo, J., Integral equations,Kodanshia, Tokyo (1991) and Clarendon Press, Oxford (1991).Google Scholar
  12. [[Ra]].
    Ramm, A.G. Random fields estimation theory, Pitman Monographs and Surveys in Pure and Applied Mathematics, 48, Longman Scientific and Technical, UK (1990).Google Scholar
  13. 2.
    Ra]]. Ramm, A.G. Multidimensional inverse scattering problems, Pitman Monographs and Surveys in Pure and Applied Mathematics, 51, Longman Scientific and Technical, UK (1992).Google Scholar
  14. [[Sa]].
    Saitoh, S. Theory of reproducing kernels and its applications, Pitman Research Notes in Mathematics Series, 189, Longman Scientific and Technical, UK (1988).Google Scholar
  15. 2.
    Saitoh, S. Integral transforms, reproducing kernels and their applications, Pitman Research Notes in Mathematics Series, 369, Addison Wesley Longman, UK (1997).Google Scholar
  16. [[TA]].
    Tikhonov, A. N., Arsenin, V. Y., Solution of ill-posed problems, John Wiley and Sons, Inc., New York (1977).Google Scholar
  17. [[Tr]].
    Treves, F., Topological vector spaces, distributions and kernels, Academic Press, New York (1967).Google Scholar
  18. [[Trill]].
    Tricomi, F. G., Integral equations, Pure and Applied Mathematics Vol. 5, New York (1957).Google Scholar
  19. [[Wi]].
    Widder, D. V., The Laplace transform, Princeton University Press, Princeton, N. J. (1972).Google Scholar
  20. [[Yo]].
    Yoshida, K., Lectures on differential and integral equations, Pure and Applied Mathematics, Interscience Publishers, New York (1960).Google Scholar


  1. [AHS].
    Aikawa, H., Hayashi, N., Saitoh, S., The Bergman space on a sector and the heat equation, Complex Variables 15 (1990), 27–36.CrossRefMathSciNetzbMATHGoogle Scholar
  2. [Ar].
    Aronszajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.Google Scholar
  3. [BHK].
    Bouard, A. de, Hayashi, N., Kato, K., Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrôdinger equations, Ann. Henri Inst. Poincare Analyse nonlinear 12 (1995), 673–725.zbMATHGoogle Scholar
  4. [BS].
    Byun, D.-W., Saitoh, S. A real inversion formula for the Laplace transform, Zeitschrift fiir Analysis und ihre Anwendungen 12 (1993), 597–603.MathSciNetzbMATHGoogle Scholar
  5. 2.
    Byun, D.-W., Saitoh, S. Approximation by the solutions of the heat equation, J. Approximation Theory 78 (1994), 226–238.CrossRefMathSciNetzbMATHGoogle Scholar
  6. 3.
    Byun, D.-W., Saitoh, S. Best approximation in reproducing kernel Hilbert spaces, Proc. of the 2th International Colloquium on Numerical Analysis, VSP-Holland (1994), 55–61.Google Scholar
  7. 4.
    Byun, D.-W., Saitoh, S. Analytic extensions of functions on the real line to entire functions, Complex Variables 26 (1995), 277–281.CrossRefMathSciNetzbMATHGoogle Scholar
  8. [BW].
    Boas, R. P., Widder, D. V., An inverse formula for the Laplace integral,Duke Math. J. 6 (1940), 1–26.Google Scholar
  9. [H].
    Hadamard, J. Sur les problème aux dérivées partielles et leur signification physique, Bull. Univ. Princeton 13 (1902).Google Scholar
  10. 2.
    Hadamard, J. Lectures on Cauchy’s Problems in Linear Partial Differential Equations, New Haven, Yale University Press. 348 (1923).Google Scholar
  11. [Hay].
    Hayashi, N.. Global existence of small analytic solutions to nonlinear Schrödinger equations, Duke Math. J. 60 (1990), 717–727.Google Scholar
  12. 2.
    Hayashi, N. Solutions of the (generalized) Korteweg-de Vries equation in the Bergman and the Szega spaces on a sector, Duke Math. J. 62 (1991), 575–591.Google Scholar
  13. [Hig].
    Higgins, J. R., Five short stories about the cardinal series, Bull. of Amer. Math. Soc. 12 (1985), 45–89.CrossRefMathSciNetzbMATHGoogle Scholar
  14. [HK].
    Hayashi, N., Kato, K., Regularity of solutions in time to nonlinear Schrödinger equations, J. Funct. Anal. 128 (1995), 255–277.Google Scholar
  15. [HS].
    Hayashi, N., Saitoh, S. Analyticity and smoothing effect for the Schrödinger equation, Ann. Inst. Henri Poincaré 52 (1990), 163–173.zbMATHGoogle Scholar
  16. 2.
    Hayashi, N., Saitoh, S. Analyticity and global existence of small solutions to some nonlinear Schrödinger equation, Commun. Math. Phys. 139 (1990), 27–41.Google Scholar
  17. [J].
    Jerri, A. J., The Shannon sampling theorem–its various extensions and applications, a tutorial review, Proceedings of the IEEE 65 (1977), 1565–1596.Google Scholar
  18. [Klu].
    Klusch, D., The sampling theorem, Dirichlet series and Hankel transforms, J. of Computational and Applied Math. 44 (1992), 261–273.Google Scholar
  19. [KT].
    Kajiwara, J., Tsuji, M. Program for the numerical analysis of inverse formula for the Laplace transform, Proceedings of the Second Korean-Japanese Colloquium on Finite or Infinite Dimensional Complex Analysis, (1994), 93–107.Google Scholar
  20. 2.
    Kajiwara, J., Tsuji, M. Inverse formula for Laplace transform, Proceedings of the 5th International Colloquium on Differential Equations, VSP-Holland (1995), 163–172.Google Scholar
  21. [MAFG].
    Morlet, J., Arens, G., Fourgeau, I., Giard, D., Wave propagation and sampling theory, Geophysics 47 (1982), 203–236.CrossRefGoogle Scholar
  22. [Mo].
    Morlet, J., Sampling theory and wave propagation, C. H. Chen, ed., Issues in Acoustic Signal Image Processing and Recognition, NATO ASI Series, Vol. 1, Springer-Verlag, Berlin (1983), 233–261.Google Scholar
  23. [NW].
    Nashed, M. Z., Wahba, G. Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind, Math. Computation 28 (1974), 69–80.CrossRefMathSciNetzbMATHGoogle Scholar
  24. 2.
    Nashed, M. Z., Wahba, G. Regularization and approximation of linear operator equations and reproducing kernel spaces, Bull. of Amer. Math. Soc. 80 (1974), 1213–1218.MathSciNetzbMATHGoogle Scholar
  25. 3.
    Nashed, M. Z., Wahba, G. Generalized inverses in reproducing kernel spaces: an approach to regularization of linear operator equations, SIAM J. Math. Anal. 5 (1974), 974–987.MathSciNetGoogle Scholar
  26. [Sa].
    Saitoh, S. The Bergman norm and the Szegö norm, Trans. Amer. Math. Soc. 249 (1979), 261–279.Google Scholar
  27. 2.
    Saitoh, S. Integral transforms in Hilbert spaces, Proc. Japan Acad. 58 (1982), 361–364.Google Scholar
  28. 3.
    Saitoh, S.. Hilbert spaces induced by Hilbert space valued functions, Proc. Amer. Math. Soc. 89 (1983), 74–78.Google Scholar
  29. 4.
    Saitoh, S. The Weierstrass transform and an isometry in the heat equation,Applicable Analysis 16 (1983) 1–6.Google Scholar
  30. 5.
    Saitoh, S. An integral inequality of exponential type for real-valued functions, World Scientific Series in Applicable Analysis 3, Inequalities and Applications, World Scientific (1994), 537–541.Google Scholar
  31. 6.
    Saitoh, S. Inverse source problems in Poisson’s equation, Suri Kaiseki Kenkyu Jo, Koukyu Roku 890 (1994), 19–30, J. of Inverse and Ill-posed Problems 5 (1997), 477–486.Google Scholar
  32. 7.
    Saitoh, S. Natural norm inequalities in nonlinear transforms, General Inequalities 7, Birkhâuser Verlag, Basel, Boston (1997).Google Scholar
  33. 8.
    Saitoh, S. Representations of inverse functions, Proc. Amer. Math. Soc. 125 (1997), 3633–3639.Google Scholar
  34. 9.
    Saitoh, S. Linear integro-differential equations and the theory of reproducing kernels,Proceedings of Volterra Centennial Symposium, Marcel Dekker, New York (to appear).Google Scholar
  35. [Schw].
    Schwartz, L., Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés (noyaux reproduisants), J. Analyse Math. 13 (1964), 115–256.Google Scholar
  36. [Stg].
    Stenger, F. Numerical methods based on Whittaker cardinal, or sinc functions, SIAM Review 23 (1981), 165–225.Google Scholar
  37. 2.
    Stenger, F. Numerical Methods Based on Sine and Analytic Functions, Springer-Verlag, New York (1993).CrossRefGoogle Scholar
  38. [SY].
    Saitoh, S., Yamamoto, M. Stability of Lipschitz type in determination of initial heat distribution, J. of Inequalities and Applications 1 (1997), 73–83.MathSciNetzbMATHGoogle Scholar
  39. 2.
    Saitoh, S., Yamamoto, M. Integral transforms involving smooth functions,This Proceedings.Google Scholar
  40. [T].
    Tsuji, K., An algorithm for sum of floating-point numbers without rounding error, In Abstracts of the Third International Colloquium on Numerical Analysis, Bulgaria (1994).Google Scholar
  41. [W].
    Wahba, G. On the approximate solution of Fredholm integral equations of the first kind, Tech. Summ. Rep. 990, Mathematics Research Center, Univ. of Wisconsin-Madison (1969).Google Scholar
  42. 2.
    Wahba, G. Convergence rates of certain approximate solutions to Fredholm integral equations of the first kind, J. of Approx. Theory 7 (1973), 167–185.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Saburou Saitoh
    • 1
  1. 1.Department of Mathematics, Faculty of EngineeringGunma UniversityKiryuJapan

Personalised recommendations