Integral Transforms Involving Smooth Functions

  • Saburou Saitoh
  • Masahiro Yamamoto
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 3)


We present a general method for obtaining isometrical identities and inversion formulas for integral transforms involving smooth functions. We illustrate our method using Fourier transforms with weights as well as for Weierstrass, Laplace, and Mellin transforms.


Hilbert Space Strong Convergence Inversion Formula Integral Transform Reproduce Kernel Hilbert Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    M. Abramowitz and L. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, U.S. Department of Commerce, AMS 55, National Bureau of Standards Applied Mathematics Series 55, 1972.Google Scholar
  2. [2].
    N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68, pp. 337–404, 1950.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3].
    D. -W. Byun and S. Saitoh, A real inversion formula for the Laplace transform, Zeitschrift fir Analysis und ihre Anwendungen 12, pp. 597–603, 1993.MathSciNetzbMATHGoogle Scholar
  4. [4].
    A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of Integral Transforms, Volume I, McGraw-Hill Book Company, Inc. 1954.Google Scholar
  5. [5].
    N. Hayashi and S. Saitoh, Analyticity and smoothing effect for the Schrödinger equation, Ann. Inst. Henri Poincaré 52, pp. 163–173, 1990.MathSciNetzbMATHGoogle Scholar
  6. [6].
    F. Oberhettinger, Tables of Mellin Transforms, Springer-Verlag, 1974.Google Scholar
  7. [7].
    S. Saitoh, Integral transforms in Hilbert spaces, Proc. Japan Acad. 58, pp. 361–364, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8].
    S. Saitoh, Hilbert spaces induced by Hilbert space valued functions, Proc. Amer. Math. Soc. 89, pp. 74–78, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9].
    S. Saitoh, Theory of reproducing kernels and its applications, Pitman Res. Notes in Math. Series 189, Longman Scientific & Technical, England, 1988.Google Scholar
  10. [10].
    S. Saitoh, Representations of the norms in Bergman-Selberg spaces on strips and half planes, Complex Variables 19, pp. 231–241, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11].
    S. Saitoh, Inequalities in the most simple Sobolev space and convolutions of L2 functions with weights, Proc. Amer. Math. Soc. 118, pp. 515–520, 1993.MathSciNetzbMATHGoogle Scholar
  12. [12]
    S. Saitoh, One approach to some general integral transforms and its appli- cations, Integral Transforms and Special Functions 3, pp. 49–84, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13].
    S. Saitoh, Integral Transforms, Reproducing Kernels and Their Applica- tions, Pitman Res. Notes in Math. Series 369, Addison Wesley Longman, 1997.Google Scholar
  14. [14].
    L. Schwartz, Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associès (noyaux reproduisants), J. Analyse Math. 13, pp. 115–256, 1964.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Saburou Saitoh
    • 1
  • Masahiro Yamamoto
    • 2
  1. 1.Department of MathematicsFaculty of Engineering Gunma UniversityKiryuJapan
  2. 2.Department of Mathematical SciencesThe University of TokyoKomaba, TokyoJapan

Personalised recommendations