Skip to main content

An Essay on the Bergman Metric and Balanced Domains

  • Chapter
Reproducing Kernels and their Applications

Part of the book series: International Society for Analysis, Applications and Computation ((ISAA,volume 3))

  • 436 Accesses

Abstract

Let Ω be a bounded pseudoconvex domain in ℂn and let EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa % aaleaacqqHPoWvaeqaaOGaaiikaiaadQhacaGGSaGabm4DayaaraGa % aiykaaaa!3CA4!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${K_\Omega }(z,\bar w)$$ be the Bergman kernel function of Ω. The boundary behavior of K Ω reflects the mass distribution of L 2 holomorphic functions on Ω through the geometry of the boundary ∂Ω in a very natural way, as one can see it from [H1] and various subsequent works (cf. [D], [P], [D’A], [O-1,2], [D-H-O], [C], [D-H], [B-S-Y], etc.). From the viewpoint of biholomorphic geometry, the Bergman metric

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaado % hadaqhaaWcbaGaeuyQdCfabaGaaGOmaaaakiabg2da9maaqahabaWa % aSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGcciGGSbGaai4Bai % aacEgacaWGlbWaaSbaaSqaaiabfM6axbqabaGccaGGOaGaamOEaiaa % cYcaceWG6bGbaebacaGGPaaabaGaeyOaIyRaamOEamaaCaaaleqaba % GaeqySdegaaOGaeyOaIyRabmOEayaaraWaaWbaaSqabeaacqaHYoGy % aaaaaaqaaiabeg7aHjaacYcacqaHYoGycqGH9aqpcaaIXaaabaGaam % OBaaqdcqGHris5aOGaamizaiaadQhadaahaaWcbeqaaiabeg7aHbaa % kiabgEPielaadsgaceWG6bGbaebadaahaaWcbeqaaiabek7aIbaaaa % a!6248!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$ds_\Omega ^2 = \sum\limits_{\alpha ,\beta = 1}^n {\frac{{{\partial ^2}\log {K_\Omega }(z,\bar z)}}{{\partial {z^\alpha }\partial {{\bar z}^\beta }}}} d{z^\alpha } \otimes d{\bar z^\beta }$$

is also a natural quantity attached to Ω. Being a Hermitian metric invariant under the biholomorphic transformations, the Bergman metric is of intrinsic nature, while the values of K Ω are not. It is well known that one can draw important information on proper holomorphic mappings from the asymptotics of K Ω and ds 2Ω (see [F] and [B-N] for more precise statements). Besides such an application, the boundary behavior of the Bergman kernel and the metric is of considerable significance in the current complex analysis, because they supply questions that urge further developments of the so called L 2 method for the ∂-operator. For instance, it was asked in [O-1] whether or not EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa % aaleaacqqHPoWvaeqaaOGaaiikaiaadQhacaGGSaGabmOEayaaraGa % aiykamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8 % 3CIKOaeqiTdq2aaSbaaSqaaiabfM6axbqabaGccaGGOaGaamOEaiaa % cMcadaahaaWcbeqaaiabgkHiTiaaikdaaaaaaa!4F84!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${K_\Omega }(z,\bar z) \gtrsim {\delta _\Omega }{(z)^{ - 2}}$$ if ∂Ωis C 2-smooth, δΩ (z) being the distance from z to ∂Ω,and this was answered affirmatively in [O-T] as a corollary of a very general extension theorem for L 2 holomorphic functions, which found even an application to algebraic geometry (cf. [A-S]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angehrn, U. and Siu, Y. T. Effective freeness and separation of points for disjoint bundles, Invent. Math. 122 (1995), 291–308.

    MathSciNet  MATH  Google Scholar 

  2. Bell, S. R. and Narasimhan, R. Proper holomorphic mappings of complex spaces, Complex manifolds, S. R. Bell et al. Springer, 1997.

    Google Scholar 

  3. Boas, H. P, Straube, E. J. and Yu, J. Boundary limits of the Bergman kernal and metric, Michigan Math. J. 42 (1995), 449–461.

    MathSciNet  MATH  Google Scholar 

  4. Catlin, D. Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429–466.

    Article  MathSciNet  MATH  Google Scholar 

  5. D’Angelo, J. A note on the Bergman kernel, Duke. Math. J. 45 (1978), 259–265.

    MathSciNet  MATH  Google Scholar 

  6. Diederich, K. Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudokonvexen Gebieten, Math. Ann. 187 (1970), 9–36.

    Article  MathSciNet  MATH  Google Scholar 

  7. Diederich, K. and Fornaess, J. E. Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions, Inv. Math. 39 (1977), 129–141.

    MathSciNet  MATH  Google Scholar 

  8. Diederich, K. and Herbort, G. Extension of holomorphic L 2 -functions with weighted growth conditions, Nagoya Math. J. 126 (1992), 141–157.

    MathSciNet  MATH  Google Scholar 

  9. Diederich, K, Herbort, G. and Ohsawa, T. The Bergman kernel on uniformly extendable pseudoconvex domains, Math. Ann. 273 (1986), 471–478.

    Article  MathSciNet  MATH  Google Scholar 

  10. Diederich, K. and Ohsawa, T. An estimate for the Bergman distance on pseudoconvex domains, Ann. Math. 141 (1995), 181–190.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ermine, J.-L. Conjecture de Sérre et espaces hyperconvexes, Lecture Notes in Mathematics 670, Springer, 1978, 124–139.

    Google Scholar 

  12. Fefferman, C. The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65.

    MathSciNet  MATH  Google Scholar 

  13. Hörmander, L. L 2 estimates and existence theorems for the 5-operator, Acta Math. 113 (1965), 89–152.

    Google Scholar 

  14. Jarnicki, M. and Pflug, P. Bergman completeness of complete circular domains, Ann. Pol. Math. 50 (1989), 219–222.

    MathSciNet  MATH  Google Scholar 

  15. Hörmander, L. Invariant distances and metrics in complex analysis, de Gruyter expositions in math. 9, 1993.

    Google Scholar 

  16. Kobayashi, S. Geometry of bounded domains,Trans. Amer. Math. Soc. 92 (1959), 267–290. [M-Y] Maitani, F. and Yamaguchi, H. Variation of three metrics on the moving Riemann surfaces,preprint.

    Google Scholar 

  17. Ohsawa, T. A remark on the completeness of the Bergman metric, Proc. Jap. Acad. 57 (1981), 238–240.

    Google Scholar 

  18. Ohsawa, T. Boundary behavior of the Bergman kernel function on pseudoconvex domains, Publ. RIMS, Kyoto Univ. 20 (1984), 897–902.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ohsawa, T. On the Bergman kernel of hyperconvex domains, Nagoya. Math. J. 129 (1993), 43–52.

    MathSciNet  MATH  Google Scholar 

  20. Ohsawa, T. Addendum to “On the Bergman kernel of hyperconvex domains”, Nagoya. Math. J. 137 (1995), 145–148.

    MathSciNet  MATH  Google Scholar 

  21. Ohsawa, T. and Sibony, N. Bounded P. S. H. functions and pseudoconvexity in Köhler manifolds,to appear in Nagoya Math. J.

    Google Scholar 

  22. Ohsawa, T. and Sibony, N. Nonexistence of Levi-flat hypersurfaces in P~,preprint.

    Google Scholar 

  23. Ohsawa, T. and Takegoshi, K. On the extension of L 2 holomorphic functions, Math. Z. 195 (1987), 197–204.

    Article  MathSciNet  MATH  Google Scholar 

  24. Pflug, P. Quadratintegrable holomorphe Funktionen und die Serre Vermutung, Math. Ann. 216 (1975), 285–288.

    Article  MathSciNet  MATH  Google Scholar 

  25. Stehlé, J.-L. Fonctions plurisousharmoniques et convexité holomorphe de certain fibrés analytiques, Lecture Notes in Mathematics 474, 155–180.

    Google Scholar 

  26. Suita, N. Capacities and kernels on Riemann surfaces, Arch. Rational Mech. Anal. 46 (1972), 212–217.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ohsawa, T. (1999). An Essay on the Bergman Metric and Balanced Domains. In: Saitoh, S., Alpay, D., Ball, J.A., Ohsawa, T. (eds) Reproducing Kernels and their Applications. International Society for Analysis, Applications and Computation, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2987-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2987-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4809-0

  • Online ISBN: 978-1-4757-2987-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics