The Bergman Kernel on Certain Decoupled Domains

  • Joe Kamimoto
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 3)


In this paper we study the singularities of the Bergman kernel of a decoupled tube domain of finite type:\({\Omega _m} = \left\{ {z \in {C^{n + 1}};{I_{{z_{n + 1}}}} > \sum\nolimits_{j = 1}^n {{a_j}{{[I{z_j}]}^{2{m_j}}}} } \right\}\)where aj > 0, mj ∈ ℕ and m n ≠ 1. Suppose k 0 is the cardinality of the set {j; m j ≠ 1}. Note that O = (0,..., 0) is a weakly pseudoconvex point. First the singularities of the Bergman kernel at O on the diagonal is essentially expressed by using (k 0 + 1)-variables; moreover the structure of singularities can be understood completely by using at most k 0-times real blowing-ups. Next in order to investigate the singularities of the Bergman kernel off the diagonal, we give an integral representation by using countably many functions whose singularities are understood directly. We also give an analogous result in the case of the Szegö kernel.


Integral Representation Finite Type Recursive Formula Pseudoconvex Domain Bergman Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. R. Bell: Differentiability of the Bergman kernel and pseudolocal estimates, Math. Z. 192 (1986), 467–472.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. R. Bell: Extendibility of the Bergman kernel function, Complex analysis, II (College Park, Md., 1985–86), 33–41, Lecture Notes in Math., 1276, Springer, Berlin-New York, 1987.Google Scholar
  3. [3]
    H. P. Boas: Extension of Kerzman’s theorem on differentiability of the Bergman kernel function, Indiana Univ. Math. J. 36 (1987), 495–499.MathSciNetzbMATHGoogle Scholar
  4. [4]
    H. P. Boas, E. J. Straube and J. Yu: Boundary limits of the Bergman kernel and metric, Michigan Math. J. 42 (1995), 449–461.MathSciNetzbMATHGoogle Scholar
  5. [5]
    A. Bomami and N. Lohoué: Projecteures de Bergman et Szegö pour une classe de domaines faiblement pseudo-convexes et estimation LP, Compositio Math. 46 Fasc 2, (1982), 159–226.Google Scholar
  6. [6]
    L. Boutet de Monvel and J. Sjöstrand: Sur la singularité des noyaux de Bergman et de Szegö, Soc. Math. de France Astérisque 3435 (1976), 123–164.Google Scholar
  7. [7]
    D. Catlin: Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429–466.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    M. Christ: Remarks on the breakdown of analyticity for -b and Szegö kernels, Proceedings of 1990 Sendai conference on harmonic analysis (S. Igari, ed. ), Lecture Notes in Math. Springer, 61–78.Google Scholar
  9. [9]
    M. Christ and D. Geller: Counterexamples to analytic hypoellipticity for domains of finite type, Ann. of Math. 235 (1992), 551–566.MathSciNetCrossRefGoogle Scholar
  10. [10]
    C. Fefferman: The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65.MathSciNetzbMATHGoogle Scholar
  11. [11]
    F. Haslinger: Szegö kernels of certain unbounded domains in C2, Rev. Roumain Math. Pures Appl., 39 (1994), 939–950.MathSciNetzbMATHGoogle Scholar
  12. [1.2]
    J. Kamimoto: Singularities of the Bergman kernel for certain weakly pseudoconvex domains, J. Math. Sci. Univ. of Tokyo 5 (1998), 99–117.MathSciNetzbMATHGoogle Scholar
  13. [13]
    F. Haslinger: Asymptotic analysis of the Bergman kernel on weakly pseudoconvex domains, Ph. D. thesis, The University of Tokyo, 1997.Google Scholar
  14. [14]
    F. Haslinger: Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in ‒, to appear in Annales Fac. Sci. Toulouse (1998).Google Scholar
  15. [15]
    On the singularities of non-analytic Szegö kernels, preprint.Google Scholar
  16. [16]
    On an integral of Hardy and Littlewood, Kyushu J. of Math. 52 (1998), 249–263.Google Scholar
  17. [17]
    J. Kamimoto, H. Ki and Y-O. Kim: On the multiplicities of the zeros of Laguerre-Pôlya functions, to appear in Proc. of Amer. Math. Soc.Google Scholar
  18. [18]
    N. Kerzman: The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149–158.MathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Korânyi: The Bergman kernel function for tubes over convex cones, Pacific J. Math. 12 (1962), 1355–1359.zbMATHGoogle Scholar
  20. [20]
    J. D. McNeal: Local geometry of decoupled pseudoconvex domains, Proceedings in honor of Hans Grauert, Aspekte de Mathematik, Vieweg, Berlin (1990), 223–230.Google Scholar
  21. [21]
    A. Nagel: Vector fields and nonisotropic metrics, Beijing Lectures in Harmonic Analysis, (E. M. Stein, ed.), Princeton University Press, Princeton, NXJ, (1986), 241–306.Google Scholar
  22. [22]
    S. Saitoh: Integral transforms, reproducing kernels and their applications, Pitman Reseach Notes in Mathematics Series 369, Addison Wesley Longman, UK (1997).Google Scholar
  23. [23]
    G. Pôlya: Über trigonometrische Integrale mit nur reelen Nullstellen, J. Reine Angew. Math. 58 (1927), 6–18.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Joe Kamimoto
    • 1
  1. 1.Department of MathematicsKumamoto UniversityKumamotoJapan

Personalised recommendations