Skip to main content

Ceramic Matrix Composites

  • Chapter
Composite Materials

Abstract

Ceramic materials in general have a very attractive package of properties: high strength and high stiffness at very high temperatures, chemical inertness, low density, and so on. This attractive package is marred by one deadly flaw, namely, an utter lack of toughness. They are prone to catastrophic failures in the presence of flaws (surface or internal). They are extremely susceptible to thermal shock and are easily damaged during fabrication and/ or service. It is therefore understandable that an overriding consideration in ceramic matrix composites (CMCs) is to toughen the ceramics by incorporating fibers in them and thus exploit the attractive high-temperature strength and environmental resistance of ceramic materials without risking a catastrophic failure. It is worth pointing out at the very outset that there are certain basic differences between CMCs and other composites. The general philosophy in nonceramic matrix composites is to have the fiber bear a greater proportion of the applied load. This load partitioning depends on the ratio of fiber and matrix elastic moduli, E f /E m . In nonceramic matrix composites, this ratio can be very high, while in CMCs, it is rather low and can be as low as unity. Another distinctive point regarding CMCs is that because of limited matrix ductility and generally high fabrication temperature, thermal mismatch between components has a very important bearing on CMC performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J. Aveston, G.A. Cooper, and A. Kelly (1971). In The Properties of Fibre Composites, IPC Science & Technology Press, Guildford, UK, p. 15.

    Google Scholar 

  • S.J. Barclay, J.R. Fox, and H.K. Bowen (1987). J. Mater Sci., 22, 4403.

    Article  CAS  Google Scholar 

  • P.F. Becher and G.C. Wei (1984). Comm. Am. Ceram. Soc., 67, 259.

    Google Scholar 

  • W. Beier and S. Markmann (Dec, 1997). Adv. Mater. & Processes, 152, 37.

    CAS  Google Scholar 

  • R.T. Bhatt (1986). NASA TN-88814.

    Google Scholar 

  • R.T. Bhatt (1990). J. Mater. Sci., 25, 3401.

    Article  CAS  Google Scholar 

  • A.R. Boccaccini, D.H. Pearce, J. Janczak, W. Beier and C.B. Ponton (1997a). Materials Science and Technology, 13, 852.

    Article  CAS  Google Scholar 

  • A.R. Boccaccini, C.B. Ponton and K.K. Chawla (1997b). Mat. Sci. Eng. A241, 142.

    Google Scholar 

  • R.K. Bordia and R. Raj (1988). J. Am. Ceram. Soc., 71, 302.

    Article  CAS  Google Scholar 

  • J.J. Brennan and K.M. Prewo (1982). J. Mater. Sci., 17, 2371.

    Article  CAS  Google Scholar 

  • C.V. Burkland, W.E. Bustamante, R. Klacka, and J.-M. Yang (1988). In Whisker- and Fiber-Toughened Ceramics, ASM Intl., Materials Park, OH, p. 225.

    Google Scholar 

  • W.C. Carter, E.P. Butler, and E.R. Fuller, Jr. (1991). Scripta Metall. et Mater., 25, 579–584.

    Article  CAS  Google Scholar 

  • K.K. Chawla (1993). Ceramic Matrix Composites, Chapman & Hall, London.

    Google Scholar 

  • K.K. Chawla, M.K. Ferber, Z.R. Xu, and R. Venkatesh (1993a). Mater. Sci. & Eng., A162, 35–44.

    Article  CAS  Google Scholar 

  • K.K. Chawla, Z.R. Xu, A. Hlinak, and Y.-W. Chung (1993b). In Advances in Ceramic-Matrix Composites, Am. Ceram. Soc., p. 725–736.

    Google Scholar 

  • N. Chawla, P.K. Liaw, E. Lara-Curzio, R.A. Lowden, and M.K. Ferber (1994). In High Performance Composites: Commonalty of Phenomena, The Minerals, Metals & Materials Society, Warrendale, PA, p. 291.

    Google Scholar 

  • A.H. Chokshi and J.R. Porter (1985). J. Am. Ceram. Soc., 68, cl44.

    Article  Google Scholar 

  • J. Cook and J.E. Gordon (1964). Proc R Soc., London, A228, 508.

    Google Scholar 

  • J.A. Cornie, Y.-M. Chiang, D.R. Uhlmann, A. Mortensen, and J.M. Collins (1986). Am. Ceram. Soc Bull., 65, 293.

    CAS  Google Scholar 

  • R.W. Davidge (1979). Mechanical Behavior of Ceramics, Cambridge University Press, Cambridge, p. 116.

    Google Scholar 

  • L.C. De Jonghe, M.N. Rahaman, C.H. Hseuh (1986). Acta Met.,., 39, 1467.

    Google Scholar 

  • J.A. DiCarlo (June 1985). J. Met.,., 37, 44.

    CAS  Google Scholar 

  • A.G. Evans, (1985). Mater. Sci. Eng., 71, 3.

    Article  CAS  Google Scholar 

  • A.G. Evans and D.B. Marshall (1989). Acta Met., 37, 2567.

    Article  CAS  Google Scholar 

  • E. Fitzer and R. Gadow (1986). Am. Ceram. Soc. Bull., 65, 326.

    CAS  Google Scholar 

  • E. Fitzer and D. Hegen (1979). Angew. Chem., 91, 316.

    Article  CAS  Google Scholar 

  • E. Fitzer and J. Schlichting (1980). Z. Werkstofftech., 11, 330.

    Article  CAS  Google Scholar 

  • C.W. Forrest, P. Kennedy, and J.V. Shennan (1972). Special Ceramics, British Ceramic Research Association, Stoke-on-Trent, UK, Vol.5, p. 99.

    Google Scholar 

  • V. Gupta (1991). MRS Bulletin, XVI-4, 39.

    Google Scholar 

  • V. Gupta, J. Yuan, and D. Martinez (1993), J. Amer. Ceram. Soc., 76, 305.

    Article  CAS  Google Scholar 

  • B. Harris (1980). Met.,. Sci., 14, 351.

    Google Scholar 

  • M.Y. He and J.W. Hutchinson (1989). J. App. Mecj, 56, 270.

    Article  Google Scholar 

  • M. Herron and S.H. Risbud (1986). Am. Ceram. Soc. Bull, 65, 342.

    CAS  Google Scholar 

  • W.B. Hillig (1988). J. Amer. Ceram. Soc., 71, C-96.

    Article  Google Scholar 

  • J. Homeny, W.L. Vaughn, and M.K. Ferber (1987). Amer. Cer. Soc. Bull., 67, 333.

    Google Scholar 

  • J.W. Hutchinson and H.M. Jensen (1990). Mech. Maths., 9, 139–163.

    Article  Google Scholar 

  • P.D. Jero (1990). Am. Ceram. Soc. Bull., 69, 484.

    Google Scholar 

  • P.D. Jero and R.J. Kerans (1990). Scripta. Metall., 24, 2315–2318.

    Article  CAS  Google Scholar 

  • P.D. Jero, R.J. Kerans, and T.A. Parthasarathy (1991). J. Am. Ceram. Soc., 74, 2793–2801.

    Article  CAS  Google Scholar 

  • B. Kellett and F.F. Lange (1989). J. Am. Ceram. Soc., 67, 369.

    Article  Google Scholar 

  • R.J. Kerans and T.A. Parthasarathy (1991). J. Am. Ceram. Soc., 74, 1585–1596.

    Article  CAS  Google Scholar 

  • D. Lewis (1991). In Metal Matrix Composites: Processing and Interfaces, Academic Press, Boston, p. 121.

    Book  Google Scholar 

  • H.Y. Liu, N. Claussen, M.J. Hoffmann, and G. Petzow (1991). J. Eur.Ceram. Soc., 7, 41.

    Article  CAS  Google Scholar 

  • T.J. Mackin, P.D. Warren, and A.G. Evans (1992). Acta Metall. Mater., 40, 1251–1257.

    Article  CAS  Google Scholar 

  • D.R. Mumm and K.T. Faber (1992). Ceram. Eng. & Sci. Proc., 7–8, 70–77.

    Google Scholar 

  • S. Nourbakhsh, F.L. Liang, and H. Margolin (1990). Met.,. Trans. A, 21A, 213.

    Article  CAS  Google Scholar 

  • S. Nourbakhsh and H. Margolin (1990). Met.,. Trans. A, 20A, 2159.

    Google Scholar 

  • D.C. Phillips (1983). In Fabrication of Composites, North-Holland, Amsterdam, p. 373.

    Google Scholar 

  • D.C. Phillips, R.A.J. Sambell, and D.H. Bowen (1972). J. Mater. Sci., 7, 1454.

    Article  CAS  Google Scholar 

  • K.M. Prewo (1982). J. Mater. Sci., 17, 3549.

    Article  CAS  Google Scholar 

  • K.M. Prewo (1986). In Tailoring Multiphase and Composite Ceramics, Vol. 20, Materials Science Research, Plenum Press, New York, p. 529.

    Book  Google Scholar 

  • K.M. Prewo and JJ. Brennan (1980). J. Mater. Sci., 15, 463.

    Article  CAS  Google Scholar 

  • K.M. Prewo, J.J. Brennan, and G.K. Layden (1986). Am. Ceram. Soc. Bull., 65, 305.

    CAS  Google Scholar 

  • M.N. Rahaman and L.C. De Jonghe (1987). J. Am. Ceram. Soc., 70, C-348.

    Article  Google Scholar 

  • R. Raj and R.K Bordia (1989). Acta Met.,., 32, 1003.

    Article  Google Scholar 

  • M. Ruhle and A.G. Evans (1988). Mater. Sci. and Eng., A107, 187.

    Google Scholar 

  • M.D. Sacks, H.W. Lee, and O.E. Rojas (1987). J. Am. Ceram. Soc., 70, C-348.

    Google Scholar 

  • R.A.J. Sambell, D.H. Bowen, and D.C. Phillips (1972). J. Mater. Sci., 7, 773.

    Google Scholar 

  • R.A.J. Sambell, D.C. Phillips, and D.H. Bowen (1974). In Carbon Fibres: Their Place in Modern Technology, the Plastics Institute, London, p. 16/9.

    Google Scholar 

  • L.J. Schioler and J.J. Stiglich (1986). Am. Ceram. Soc. Bull., 65, 289.

    CAS  Google Scholar 

  • P.D. Shalek, J.J. Petrovic, G.F. Hurley, and F.D. Gac (1986). Amer. Ceram. Soc. Bull., 65, 351.

    CAS  Google Scholar 

  • B.F. Sorensen (1993). Scripta Metall. et Mater., 28, 435–439.

    Article  Google Scholar 

  • D.P. Stinton, A.J. Caputo, and R.A. Lowden (1986). Am. Ceram. Soc. Bull., 65, 347.

    CAS  Google Scholar 

  • T.N. Tiegs and P.F. Becher (1986). In Tailoring Multiphase and Composite Ceramics, Plenum Press, New York, p. 639.

    Book  Google Scholar 

  • A.W. Urquhart (1991). Mater. Sci. Eng., A144, 75.

    CAS  Google Scholar 

  • R. Venkatesh and K.K. Chawla (1992). J. Mater. Sci., 11, 650–652.

    CAS  Google Scholar 

  • G.C. Wei and P.F. Becher (1984). Am. Ceram. Soc. Bull., 64, 298.

    Google Scholar 

  • P.A. Willer Met, R.A. Pett, and T.J. Whalen (1978). “Development and Processing of Injection-Moldable Reaction-Sintered SiC Compositions,” Amer. Ceram. Soc. Bull., 57, 744.

    Google Scholar 

  • M. Yang and R. Stevens (1990). J. Mater. Sci., 25, 4658.

    Article  CAS  Google Scholar 

Suggested Reading

  • K.K. Chawla (1993). Ceramic Matrix Composites, Chapman & Hall, London.

    Google Scholar 

  • K.S. Mazdiyasni (Ed.) (1990). Ceramic Fiber Reinforced Composites, Noyes Pub., Park Ridge, NJ.

    Google Scholar 

  • D.C. Phillips (1983). “Fiber Reinforced Ceramics,” In Fabrication of Ceramics, vol. 4 of Handbook of Composites, North-Holland, Amsterdam, p. 373.

    Google Scholar 

  • R. Warren (Ed.) (1991). Ceramic Matrix Composites, Blackie & Sons, Glasgow, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, K.K. (1998). Ceramic Matrix Composites. In: Composite Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2966-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2966-5_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3124-5

  • Online ISBN: 978-1-4757-2966-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics