Skip to main content

Interfaces

  • Chapter
Book cover Composite Materials

Abstract

We can define an interface between a reinforcement and a matrix as the bounding surface between the two across which a discontinuity in some parameter occurs. The discontinuity across the interface may be sharp or gradual. Mathematically, interface is a bidimensional region. In practice, we have an interfacial region with a finite thickness. In any event, an interface is the region through which material parameters, such as concentration of an element, crystal structure, atomic registry, elastic modulus, density, coefficient of thermal expansion, etc. change from one side to another. Clearly, a given interface may involve one or more of these items.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R.J. Arsenault and R.M. Fisher (1983). Scripta Met, 17, 67.

    Article  CAS  Google Scholar 

  • R.E. Baier, E.G. Sharfin, and W.A. Zisman (1968). Science, 162, 1360.

    Article  CAS  Google Scholar 

  • L.J. Broutman (1969). In Interfaces in Composites, ASTM STP No. 452, American Society of Testing & Materials, Philadelphia.

    Google Scholar 

  • J.W. Cahn and R.E. Hanneman (1964). Surf. Sci., 94, 65.

    Google Scholar 

  • J.W. Cahn (1979). In Interfacial Segregation, ASM, Metals Park, OH, p. 3.

    Google Scholar 

  • C.C. Chamis (1974). In Composite Materials, Vol. 6, Academic Press, New York, p. 32.

    Google Scholar 

  • K.K. Chawla (1997). Composites Interfaces, 4, 287.

    Article  CAS  Google Scholar 

  • K.K. Chawla and M. Metzger (1972). J. Mater. Sci., 7, 34.

    Article  CAS  Google Scholar 

  • K.K. Chawla and M. Metzger (1978). In Advances in Research on Strength and Fracture of Materials, Vol. 3, Pergamon Press, New York, p. 1039.

    Google Scholar 

  • K.K. Chawla and Z.R. Xu (1994). In High Performance Composites: Commonalty of Phenomena, TMS, Warrendale, PA, p. 207.

    Google Scholar 

  • K.K. Chawla, Z.R. Xu, J.-S. Ha, E. Lara-Curzio, M.K. Ferber, and S. Russ (1995). In Advances in Ceramic Matrix Composites II, Amer. Ceram. Soc., Westerville, OH, p. 779.

    Google Scholar 

  • K.K. Chawla, Z.R. Xu, A. Hlinak, and Y.-W. Chung (1993). In Advances in Ceramic-Matrix Composites, Am. Ceram. Soc., p. 725.

    Google Scholar 

  • D.C. Cranmer (1991). In Ceramic and Metal Matrix Composites, Pergamon Press, New York, p. 157.

    Google Scholar 

  • M.F. Doerner and W.D. Nix (1986). J. Mater. Res., 1, 601.

    Article  Google Scholar 

  • L.T. Drzal, M. Madhukar, and M. Waterbury (1994). Compos. Sci Tech., 27, 65–71.

    Google Scholar 

  • L.T. Drzal, M.J. Rich, and P.F. Lloyd (1983). J. Adhesion, 16, 1–30.

    Article  CAS  Google Scholar 

  • L.T. Drzal, N. Sugiura, and D. Hook (1997). In Composite Interfaces, 4, 337.

    Article  CAS  Google Scholar 

  • J.I. Eldridge (1995). In Mat. Res. Soc. Symp. Proc, Vol. 365, Materials Research Society, p. 283.

    Article  CAS  Google Scholar 

  • M.K. Ferber, A.A. Wereszczak, L. Riester, R.A. Lowden, and K.K. Chawla (1993). Ceramic Sci & Eng. Proc, Amer. Ceram. Soc., Westerville, Oh.

    Google Scholar 

  • M.K. Ferber, E. Lara-Curzio, S. Russ, and K.K. Chawla (1995). In Ceramic Matrix Composites—Advanced High-Temperature Structural Materials, Materials Research Society, Pittsburgh, PA, p. 277.

    Google Scholar 

  • M.E. Fine, R. Mitra, and K.K. Chawla (1993). Scripta Met. et Mater., 29, 221.

    Article  CAS  Google Scholar 

  • V. Gupta, A.S. Argon, J.A. Cornie, and D.M. Parks (1990). Mater. Sci. Eng., A126, 105.

    CAS  Google Scholar 

  • V. Gupta, A.S. Argon, J.A. Cornie, D.M. Parks (1992). J. Mech. Phys. Solids, 4, 141.

    Article  Google Scholar 

  • R.G. Hill, R.P. Nelson, and C.L. Hellerich (1969). In Proceedings of the Refractory Working Group Meeting, Seattle, WA, Oct.

    Google Scholar 

  • C.-H. Hsueh, (1992). J. Am. Ceram Soc., 76, 3041.

    Article  Google Scholar 

  • N. Iosipescu (1967). J. Mater., 2, 537.

    Google Scholar 

  • J. Janczak, G. Bürki, and L. Rohr (1997). Key Engineering Materials, 127, 623.

    Article  Google Scholar 

  • I. Jangehud, A.M. Serrano, R.K. Eby, and M.A. Meador (1993). In Proc. 21st Biennial Conf. on Carbon, Buffalo, NY, June 13–18.

    Google Scholar 

  • R.E. Johnson (1959). J. Phys. Chem., 63, 1655.

    Article  CAS  Google Scholar 

  • R.J. Kerans, R.S. Hays, N.J. Pagano, and T.A. Parthasarathy (1989). Amer. Cer. Soc. Bull, 68 429.

    CAS  Google Scholar 

  • R.J. Kerans and T.A. Parthasarathy (1991). J. Amer. Cer. Soc., 74, 1585.

    Article  CAS  Google Scholar 

  • E. Lara-Curzio and M.K. Ferber (1994). J. Mater. Sci., 29, 6158.

    Article  Google Scholar 

  • P. Lawrence (1972). J. Mater. Sci., 7, 1.

    Article  CAS  Google Scholar 

  • D.B. Marshall and W.C. Oliver (1987). J. Amer. Ceram. Soc., 70, 542.

    Article  CAS  Google Scholar 

  • D.B. Marshall (1984). J. Amer. Ceram. Soc., 67, c259.

    Article  CAS  Google Scholar 

  • D.B. Marshall (1989). J. Am. Ceram. Soc., 67, 7.

    Google Scholar 

  • D.B. Marshall, M.C. Shaw, and W.L Morris (1992). Acta Met. et Mater. 40, 443.

    Article  CAS  Google Scholar 

  • L.S. Perm and S.M. Lee (1989). J. Comp. Tech. & Res., 11, 23.

    Article  Google Scholar 

  • C. Schoene and E. Scala (1970). Met. Trans, 1, 3466.

    CAS  Google Scholar 

  • R.M. Vennett, S.M. Wolf, and A.P. Levitt (1970). Met Trans., 1, 1569.

    Article  CAS  Google Scholar 

  • M. Vogelsang, R.J. Arsenault, and R.M. Fisher (1986). Met. Trans. A, 17, 379.

    Article  Google Scholar 

  • J.L. Walter, H.E. Cline, and E. Koch (1969). Trans. AIME, 245, 2073.

    CAS  Google Scholar 

  • T.P. Weihs and W.D. Nix (1991). J. Amer. Ceram. Soc., 74, 524.

    Article  CAS  Google Scholar 

  • R.N. Wenzel (1936). Ind. & Eng. Chem., 28, 987.

    Article  Google Scholar 

Suggested Reading

  • L.A. Carlsson and R.B. Pipes, Experimental Characterization of Advanced Composite Materials, Prentice-Hall, Englewood Cliffs, NJ, 1987.

    Google Scholar 

  • K.T. Faber (1997). Annual Review of Materials Science, 27, 499.

    Article  CAS  Google Scholar 

  • J.-K. Kim and Y.-W. Mai (1998). Engineered Interfaces in Fiber Reinforced Composites, Elsevier, New York.

    Google Scholar 

  • E.P. Plueddemann (Ed.) (1974). Interfaces in Polymer Matrix Composites (Vol. 6 of the series Composite Materials), Academic Press, New York.

    Google Scholar 

  • H.D. Wagner and G. Marom (Ed.) (1997). Composite Interfaces (Special issue— Selected papers from the Sixth International Conference on Composite Interfaces (ICCI-6), Israel), VSP, Zeist, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, K.K. (1998). Interfaces. In: Composite Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2966-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2966-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3124-5

  • Online ISBN: 978-1-4757-2966-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics