• Krishan K. Chawla


Reinforcements need not necessarily be in the form of long fibers. One can have them in the form of particles, flakes, whiskers, short fibers, continuous fibers, or sheets. It turns out that most reinforcements used in composites have a fibrous form because materials are stronger and stiffer in the fibrous form than in any other form. Specifically, in this category, we are most interested in the so-called advanced fibers, which possess very high strength and very high stiffness coupled with a very low density. The reader should realize that many naturally occurring fibers can be and are used in situations involving not very high stresses (Chawla, 1976; Chawla and Bastos, 1979). The great advantage in this case, of course, is its low cost. The vegetable kingdom is, in fact, the largest source of fibrous materials. Cellulosic fibers in the form of cotton, flax, jute, hemp, sisal, and ramie, for example, have been used in the textile industry, while wood and straw have been used in the paper industry. Other natural fibers, such as hair, wool, and silk, consist of different forms of protein. Silk fibers produced by a variety of spiders, in particular, appear to be very attractive because of their high work of fracture. Any discussion of such fibers is beyond the scope of this book. The interested reader is directed to some books that cover the vast field of fibers (Chawla, 1998; Warner, 1995). In this chapter, we confine ourselves to a variety of man-made reinforcements.


Carbon Fiber Rice Hull Ceramic Fiber Aramid Fiber Precursor Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. C.-H. Andersson and R. Warren (1984). Composites, 15, 16.CrossRefGoogle Scholar
  2. R. Bacon (1973). In Chemistry and Physics of Carbon, vol. 9, Marcel Dekker, New York, p. 1.Google Scholar
  3. A.A. Baker (1983). Metals Forum, 6, 81.Google Scholar
  4. P.J. Barham and A. Keller (1985). J. Mater. Sd, 20, 2281.CrossRefGoogle Scholar
  5. S.C. Bennett and D.J. Johnson (1978). In Fifth International Carbon and Graphite Conference, Society of the Chemical Industry, London, p. 377.Google Scholar
  6. S.C. Bennett and D.J. Johnson (1979). Carbon, 17, 25.CrossRefGoogle Scholar
  7. S.C. Bennett, D.J. Johnson, and W. Johnson (1983). J. Mater. Sc, 18, 3337.CrossRefGoogle Scholar
  8. D.A. Biro, G. Pleizier and Y. Deslandes (1992). J. Mater. Sci. Lett., 11, 698.CrossRefGoogle Scholar
  9. C.J. Brinker and G. Scherer (1990). The Sol-Gel Science, Academic Press, New York.Google Scholar
  10. J.R. Brown, P.J.C. Chappell and Z. Mathys (1992) J. Mater. Sci., 27, 3167.CrossRefGoogle Scholar
  11. G. Capaccio, A.G. Gibson, and I.M. Ward (1979). In Ultra-High Modulus Polymers, Applied Science Publishers, London, p. 1.Google Scholar
  12. K.K. Chawla (1976). In Proceedings of the International Conference on the Mechani cal Behavior of Materials II, ASM, Metals Park, Ohio, p. 1920.Google Scholar
  13. K.K. Chawla (1981). Mater. Sci. Eng., 48, 137.CrossRefGoogle Scholar
  14. K.K. Chawla (1998). Fibrous Materials, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  15. K.K. Chawla and A.C. Bastos (1979). In Proceedings of the International Conference on the Mechanical Behavior of Materials III, Pergamon Press, Oxford, p. 191.Google Scholar
  16. C.C. Chiao and T.T. Chiao (1982). In Handbook of Composites, Van Nostrand Reinhold, New York, p. 272.CrossRefGoogle Scholar
  17. E. de Lamotte and A.J. Perry (1970). Fibre Sci. Tech., 3, 157.CrossRefGoogle Scholar
  18. H.E. DeBolt (1982). In Handbook of Composites, Van Nostrand Reinhold, New York, p. 171.Google Scholar
  19. S.J. DeTeresa, S.R. Allen, R.J. Farris, and R.S. Porter (1984). J. Mater. Sd, 19, 57.CrossRefGoogle Scholar
  20. J.A. DiCarlo (June 1985). J. Met. 37, 44.Google Scholar
  21. R.J. Diefendorf and E. Tokarsky (1975). Polym. Eng. Sci., 15, 150.CrossRefGoogle Scholar
  22. M.G. Dobb, D.J. Johnson, and B.P. Saville (1980). Philos. Trans. R. Soc. London, A294, 483.CrossRefGoogle Scholar
  23. W.H. Dresher (April, 1969). J. Metals, 21, 17.Google Scholar
  24. H.N. Ezekiel and R.G. Spain (1967). J. Polym. Sci. C, 19, 271.Google Scholar
  25. P.J. Flory (1956). Proc. Roy. Soc. (London), 234A, 73.Google Scholar
  26. A. Fourdeux, R. Perret, and W. Ruland (1971). In Carbon Fibres: Their Composites and Applications, The Plastics Institute, London, p. 57.Google Scholar
  27. F. Galasso and A. Paton (1966). Trans. Met. Soc. AIME, 236, 1751.Google Scholar
  28. F. Galasso, D. Knebl, and W. Tice (1967). J. Appl. Phys., 38, 414.CrossRefGoogle Scholar
  29. D.G. Gasson and B. Cockayne (1970) J. of Mater. Sci., 5, 100.CrossRefGoogle Scholar
  30. J.S. Haggerty (1972). NASA-CR-120948, NASA Lewis Res. Center, Cleveland, OH.Google Scholar
  31. D.N. Hild and P. Schwartz (1992a) J. Adhes. Sci. Technol, 6, 879.CrossRefGoogle Scholar
  32. D.N. Hild and P. Schwartz (1992b) J. Adhes. Sci. Technol, 6, 897.CrossRefGoogle Scholar
  33. K.A. Hodd and D.C. Turley (1978). Chem. Br. 14, 545.Google Scholar
  34. G.F. Hurley and J.T.A. Pollack (1972). Met. Trans., 7, 397.Google Scholar
  35. O.T. Inal, N. Leca, and L. Keller (1980). Phys. Status Solidi, 62, 681.CrossRefGoogle Scholar
  36. M. Jaffe and R.S. Jones (1985). In Handbook of Fiber Science & Technology, vol. 111, High Technology Fibers, Part A, Marcel Dekker, New York, p. 349.Google Scholar
  37. J. Johnson and C.N. Tyson (1969). Br. J. Appl. Phys., 2, 787.Google Scholar
  38. R.W. Jones (1989). Fundamental Principles of Sol-Gel Technology, The Institute of Metals, London.Google Scholar
  39. B. Kalb and A.J. Pennings (1980). J. Mater. Sci., 15, 2584.CrossRefGoogle Scholar
  40. S.L. Kaplan, P.W. Rose, H.X. Nguyen and H.W. Chang (1988). SAMPE Quarterly, 19, 55.Google Scholar
  41. T. Kikuchi (1982). Surface, 20, 270.Google Scholar
  42. V. Krukonis (1977). In Boron and Refractory Borides, Springer-Verlag, Berlin, p. 517.CrossRefGoogle Scholar
  43. S.L. Kwolek, P.W. Morgan, J.R. Schaefgen, and L.W. Gultich (1977). Macromolecules, 10, 1390.CrossRefGoogle Scholar
  44. H.E. LaBelle (1971). Mater. Res. Bull, 6, 581.CrossRefGoogle Scholar
  45. H.E. LaBelle and A.I. Mlavsky (1970). Mater. Res. Bull, 6, 571.Google Scholar
  46. C. Laffon, A.M. Flank, P. Lagarde, M. Laridjani, R. Hagege, P. Olry, J. Cotteret, J. Dixmier, J.L. Niquel, H. Hommel and A.P. Legrand (1989). J. Mater Sci., 24, 1503.CrossRefGoogle Scholar
  47. R.M. Laine and F. Babonneau (1993). Chem. Mater., 5, 260.CrossRefGoogle Scholar
  48. R.M. Laine, Z-F. Zhang, K.W. Chew, M. Kannisto and C. Scotto (1995). In Ceramic Processing Science and Technology, Am. Ceram. Soc, Westerville, OH, p. 179.Google Scholar
  49. J.-G. Lee and I. B. Cutler (1975). Am. Ceram. Soc. Bull, 54, 195.Google Scholar
  50. Z.F. Li, A.N. Netravali and W. Sachse (1992). J. Mater. Sci., 27, 4625.CrossRefGoogle Scholar
  51. J. Lipowitz, J.A. Rabe, and L.K. Frevel (1990). J. Mater. Sci., 25, 2118.CrossRefGoogle Scholar
  52. K.L. Loewenstein (1983). The Manufacturing Technology of Continuous Glass Fibers, 2nd ed., Elsevier, New York.Google Scholar
  53. R.E. Lowrie (1967). In Modern Composite Materials, Addison-Wesley, Reading, MA, p.270.Google Scholar
  54. E.E. Magat (1980). Philos. Trans. R Soc. London, A296, 463.CrossRefGoogle Scholar
  55. T. Mah, N.L. Hecht, D.E. McCullum, J.R. Hoenigman, H.M. Kim, A.P. Katz, and H.A. Lipsitt (1984). J. Mater. Sci., 19, 1191.CrossRefGoogle Scholar
  56. J.V. Milcwski, J.L. Sandstrom, and W.S. Brown (1974). In Silicon Carbide 1973, University of South Carolina Press, Columbia, p. 634.Google Scholar
  57. J.V. Milewski, F.D. Gac, J.J. Petrovic, S.R. Skaggs (1985). J. Mater. Sci., 20, 1160.CrossRefGoogle Scholar
  58. P.W. Morgan (1979). Plast. Rubber: Mater. Appl., 4, 1.Google Scholar
  59. J.S. Murday, D.D. Dominguez, L.A. Moran, W.D. Lee, and R. Eaton (1984). Synth. Met. 9, 397.CrossRefGoogle Scholar
  60. M.G. Northolt (1981). J. Mater. Sci., 16, 2025.CrossRefGoogle Scholar
  61. S. Ozawa, Y. Nakagawa, K. Matsuda, T. Nishihara and H. Yunoki (1978). US patent 4,075,172Google Scholar
  62. B. Parkyn (Ed.) (1970). Glass Reinforced Plastics, Butterworth, London.Google Scholar
  63. R. Perret and W. Ruland (1970). J. Appl. Crystallogr., 3, 525.CrossRefGoogle Scholar
  64. J.J. Petrovic. J.V. Milewski. D.L. Rohr, and F.D. Gac (1985). J. Mater. Sd., 20, 1167.CrossRefGoogle Scholar
  65. J.T.A. Pollack (1972) J. Mater. Sci., 7, 787.CrossRefGoogle Scholar
  66. J.P. Riggs (1985). In Encyclopedia of Polymer Science & Engineering, 2nd ed., vol. 2, John Wiley & Sons, New York, p. 640.Google Scholar
  67. M.D. Sacks, G.W. Scheiffele, M. Saleem, G.A. Staab, A.A. Morrone and T.J. Williams (1995). Ceramic Matrix Composites: Advanced High-Temperature Structural Materials, MRS, Pittsburgh, PA, p. 3.Google Scholar
  68. S. Sakka (1985). Am. Ceram. Soc. Bull, 64, 1463.Google Scholar
  69. G. Simon and A.R. Bunsell (1984). J. Mater. Sci., 19, 3649.CrossRefGoogle Scholar
  70. L.S. Singer (1979). In Ultra-High Modulus Polymers, Applied Science Publishers, Essex, England, p.251.Google Scholar
  71. A. Shindo (1961). Rep. Osaka Ind. Res. Inst. No. 317.Google Scholar
  72. P. Smith and P.J. Lemstra (1976). Colloid Polymer Sci., 15, 258.Google Scholar
  73. W.D. Smith (1977). In Boron and Refractory Borides, Springer-Verlag, Berlin, p. 541.CrossRefGoogle Scholar
  74. J. Smook and A.J. Pennings (1984). J. Mater. Sci., 19, 31.CrossRefGoogle Scholar
  75. H.G. Sowman (1988). In Sol-Gel Technology, L.J. Klein (ed), Noyes Pub., Park Ridge, NJ, p. 162.Google Scholar
  76. C.P. Talley (1959). J. Appl. Phys., 30, 1114.CrossRefGoogle Scholar
  77. C.P. Talley, L. Line, and O. Overman (1960). In Boron: Synthesis, Structure, and Properties, Plenum Press, New York, p. 94.Google Scholar
  78. D. Tanner, A.K. Dhingra, and J.J. Pigliacampi (March, 1986). J. Met., 38, 21.Google Scholar
  79. W. Toreki, CD. Batich, M.D. Sacks, M. Saleem, G.J. Choi, and A.A. Morrone (1994). Compos. Sci and Technol., 51, 145.CrossRefGoogle Scholar
  80. A.C. van Maaren, O. Schob, and W. Westerveld (1975). Philips Tech. Rev., 35, 125.Google Scholar
  81. J. Vega-Boggio and O. Vingsbo (1978). In 1978 International Conference on Composite Materials, ICCM/2, TMS-AIME, New York, p. 909.Google Scholar
  82. F.T. Wallenberger, N.E. Weston, K. Motzfeldt and D.G. Swartzfager (1992). J. Amer. Ceram. Soc., 75, 629.CrossRefGoogle Scholar
  83. S.B. Warner (1995). Fiber Science, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  84. R. Warren and C.-H. Andersson (1984). Composites, 15, 101.CrossRefGoogle Scholar
  85. W. Watt (1970). Proc. R. Soc., A319, 5.Google Scholar
  86. W. Watt and W. Johnson (1969). Appl. Polym. Symp., 9, 215.Google Scholar
  87. F.W. Wawner (1967). In Modern Composite Materials, Addison-Wesley, Reading, MA, p. 244.Google Scholar
  88. S.G. Wax (1985). Am. Ceram. Soc. Bull, 64, 1096.Google Scholar
  89. E. Weintraub (1911). J. Ind. Eng. Chem., 3, 299.CrossRefGoogle Scholar
  90. R.R. Wills, R.A. Mankle, and S.P. Mukherjee (1983). Am. Ceram. Soc. Bull. 62, 904.Google Scholar
  91. D.M. Wilson (1990). In Proc. 14th Conf. on Metal Matrix, Carbon, and Ceramic Matrix Composites, Cocoa Beach, FL, Jan. 17–19, 1990, NASA Conference Publication 3097, Part 1, p. 105.Google Scholar
  92. K.J. Wynne and R.W. Rice (1984). Ann. Rev. Mater. Sci., 15, 297.CrossRefGoogle Scholar
  93. S. Yajima (1980). Philos. Trans. R Soc. London, A294, 419.CrossRefGoogle Scholar
  94. S. Yajima, K. Okamura, J. Hayashi, and M. Omori (1976). J. Am. Ceram. Soc., 59, 324.CrossRefGoogle Scholar
  95. Z.-F. Zhang, S. Scotto and R.M. Laine (1994) in Ceram. Eng. Sci. Proc., 15, 152.CrossRefGoogle Scholar

Suggested Reading

  1. A.R. Bunsell (Ed.) (1988). Fibre Reinforcements for Composite Materials, Elsevier, Amsterdam.Google Scholar
  2. K.K. Chawla (1998). Fibrous Materials, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  3. J.B. Donnet and R.C. Bansal (1984). Carbon Fibers, second edition, Marcel Dekker, New York.Google Scholar
  4. E. Fitzer (1985). Carbon Fibres and Their Composites, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  5. L. H Peebles (1995). Carbon Fibers, CRC Press, Boca Raton, FL.Google Scholar
  6. S.B. Warner (1995). Fiber Science, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  7. W. Watt and B. V. Perov (Eds.) (1985). Strong Fibres, vol. 1. in the Handbook of Composites series, North-Holland, Amsterdam.Google Scholar
  8. Yang, H.H. (1993). Kevlar Aramid Fiber, John Wiley, Chichester, UK.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Krishan K. Chawla
    • 1
  1. 1.Materials and EngineeringThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations