Fatigue and Creep

  • Krishan K. Chawla


In Chapter 12 we described the monotonic behavior of a composite under ambient temperature conditions of loading. There are many applications of composites where cyclic fatigue and high-temperature creep conditions are very important. Accordingly, in this chapter we go further in complexity and describe the fatigue and creep behavior of composites. Fatigue is the phenomenon of mechanical property degradation leading to failure of a material or a component under cyclic loading. The operative word in this definition is cyclic. This definition thus excludes the so-called phenomenon of static fatigue, which is sometimes used to describe stress corrosion cracking in glasses and ceramics in the presence of moisture. Creep refers to time-dependent deformation in a material, which becomes important at relatively high temperatures (T > 0.4 T m , where T m is the melting point in kelvin). We first describe fatigue and then creep of composites.


Fatigue Crack Fatigue Life Creep Rate Fatigue Crack Growth Fatigue Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.E. Allison and J.W. Jones (1993). In Fundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A Needleman (Eds.), Butterworth-Heinemann, Boston, p. 269.Google Scholar
  2. P.W.R. Beaumont (1989). In Design with Advanced Composite Materials, L.N. Phillips (Ed.), Springer-Verlag, Berlin, p. 303.Google Scholar
  3. B.A. Bender, J.S. Wallace, and D.J. Schrodt (1991). J. Mater. Sci., 12, 970.Google Scholar
  4. A.R. Boccaccini, D.H. Pearce, J. Janczak, W. Beier, and C.B. Ponton (1997a). Materials Science and Technology, 13, 852.CrossRefGoogle Scholar
  5. A.R. Boccaccini, C.B. Ponton, and K.K. Chawla (1998). Mat. Sci. Eng. A241, 142.Google Scholar
  6. J.J. Bonnen, C.P. You, J.E. Allison, and J.W. Jones (1990). In Proc. Int. Conf. on Fatigue, p. 887.Google Scholar
  7. A.R. Champion, W.H. Krueger, H.S. Hartman, and A.K. Dhingra (1978). Proc: 1978 Intl. Conf. Composite Materials (ICCM/2), p. 883, TMS-AIME, New York.Google Scholar
  8. K.K. Chawla (1973a). Metallography, 6, 155.CrossRefGoogle Scholar
  9. K.K. Chawla (1973b). Philos. Mag., 28, 401.CrossRefGoogle Scholar
  10. K.K. Chawla (1975a). Fibre Sci. & Tech., 8, 49.CrossRefGoogle Scholar
  11. K.K. Chawla (1975b). Grain Boundaries in Eng. Materials, Proc. 4th Bolton Landing Conf., Claitor’s Pub. Div., Baton Rouge, LA, p. 435.Google Scholar
  12. K.K. Chawla and P.K. Liaw (1979). J. Materials Sci, 14, 2143.CrossRefGoogle Scholar
  13. K.K. Chawla, H. Schneider, Z.R. Xu, and M. Schmücker (1996). In High Temperature Materials: Design & Processing Considerations, Engineering Foundation Conf., Davos, Switzerland, TMS, Warrendale, PA, May 19–24, p. 235.Google Scholar
  14. N. Chawla (1997). Met. & Mater. Trans., 28A, 2423.CrossRefGoogle Scholar
  15. N. Chawla, J.W. Holmes, and R.A. Lowden (1996). Scripta Mater., 35, 1411.CrossRefGoogle Scholar
  16. N. Chawla, Y.K. Tur, J.W. Holmes, J.R. Barber, and A. Szweda (1998).J. Am. Ceram. Soc, 81, 1221.CrossRefGoogle Scholar
  17. T. Christman and S. Suresh (1988a). Acta Metall., 36, 1691.CrossRefGoogle Scholar
  18. T. Christman and S. Suresh (1988b). Mater. Sci. Eng., 102A, 211.Google Scholar
  19. C.R. Crowe and D.F. Hasson (1982). In Proc. 6th Int. Conf. on the Strength of Metals and Alloys, Pergamon, Oxford, p. 859.Google Scholar
  20. D.L. Davidson (1989). Eng. Fract. Mech, 33, 965.CrossRefGoogle Scholar
  21. A. Dlouhy, N. Merk, and G. Eggeler (1993). Acta. Metall. Mater., 41, 3245.CrossRefGoogle Scholar
  22. T.L. Dragone and W.D. Nix (1992). Acta. Metall. Mater., 40, 2781.CrossRefGoogle Scholar
  23. T.L. Dragone, J.J. Schlautmann, and W.D. Nix (1991). Metall. Trans, 22A, 1029.Google Scholar
  24. D.C. Dunand and B. Derby (1993). In Fundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A Needleman (Eds.), Butterworth-Heinemann, Boston, p. 191.Google Scholar
  25. G.J. Dvorak and W.S. Johnson (1980). Intl. J. Fracture, 16, 585.CrossRefGoogle Scholar
  26. G. Eggeler and A. Dlouhy (1994). In High Performance Composites: Commonalty of Phenomena, K.K. Chawla, P.K. Liaw, and S.G. Fishman (Eds.), TMS, Warrendale, PA, p. 477.Google Scholar
  27. R.H. Eriksen (1976). Composites, 7, 189.CrossRefGoogle Scholar
  28. L.B. Godefroid and K.K. Chawla (1988). 3rd Latin American Colloquium on Fatigue and Fracture of Materials, Rio de Janeiro, Brazil.Google Scholar
  29. J.P. Gomez and F.W. Wawner (1988). Personal communication.Google Scholar
  30. M. Gouda, K.M. Prewo, and A.J. McEvily (1981). Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society of Testing and Materials, Philadelphia, p. 101.CrossRefGoogle Scholar
  31. J.E. Hack, R.A. Page, and G.R. Leverant (1987). Met Trans.A, 15A, 1389.Google Scholar
  32. H.T. Hahn and R.Y. Kim (1976). J. Composite Materials, 10, 156.CrossRefGoogle Scholar
  33. H.T. Hahn and L. Lorenzo (1984). In Advances in Fracture Research, ICF6, Pergamon Press, Oxford, Vol. 1, p. 549.Google Scholar
  34. L.X. Han and S. Suresh (1989). J. Amer. Ceram. Soc, 72, 1233.CrossRefGoogle Scholar
  35. H.E. Helms and P.J. Haley (1989). In Ceramic Materials and Components for Engines, V.J. Tennery (Ed.), Amer. Ceram. Soc, Westerville, OH, p. 1347.Google Scholar
  36. A.L. Highsmith and K.L. Reifsnider (1982). In Damage in Composite Materials, ASTM STP 775, Amer. Soc. of Testing and Mater., Philadelphia, p. 103.Google Scholar
  37. J.W. Holmes (1991). J. Mater. Sci., 26, 1808.CrossRefGoogle Scholar
  38. Y. Izuka, T. Norita, T. Nishimura, and K. Fujisawa (1986). In Carbon Fibers, Noyes Pub., Park Ridge, NJ, p. 14.Google Scholar
  39. W.S. Johnson (1988). Mechanical and Physical Behavior of Metallic and Ceramic Composites, 9th Ris0 Intl. Symp. on Metallurgy and Materials Science, Riso Nat. Lab., Roskilde, Denmark, p. 403.Google Scholar
  40. W.S. Johnson and R.R. Wallis (1986). Composite Materials: Fatigue and Fracture, ASTM STP 907, ASTM, Philadelphia, p. 161.CrossRefGoogle Scholar
  41. P.G. Karandikar and T.-W. Chou (1992). Ceram. Eng. Sci. Proc, 13, 882.Google Scholar
  42. A. Kelly and K.N. Street (1972a). Proc. R Soc. Lond. A, 328, 267.CrossRefGoogle Scholar
  43. A. Kelly and K.N. Street (1972b). Proc. R Soc. Lond. A, 328, 283.CrossRefGoogle Scholar
  44. A. Kelly and W.R. Tyson (1966). J. Mech. Phys. Solids, 14, 177.CrossRefGoogle Scholar
  45. S. Kumai and J.F. Knott (1991). Mater. Sci and Eng., A146, 317CrossRefGoogle Scholar
  46. S. Kumai, J.E. King, and J.F. Knott (1990). Fatigue Fract. Eng. Mater. Struct, 13, 511.CrossRefGoogle Scholar
  47. L.K. Kwei and K.K. Chawla (1992). J. Materials Science, 27, 1101.CrossRefGoogle Scholar
  48. R.E. Lavengood and L.E. Gulbransen (1969). Polymer Eng. Sci., 9, 365.CrossRefGoogle Scholar
  49. C.S. Lee and K.K. Chawla (1987). In Proc: Industry-University Adv. Mater. Conf, TMS-AIME, Warrendale, PA, p. 289.Google Scholar
  50. C.S. Lee, K.K. Chawla, J.M. Rigsbee, and M. Pfeifer (1988). Cast Reinforced Metal Composites, ASM Intl., Metals Park, OH, p. 301.Google Scholar
  51. M. Levin, B. Karlsson, and J. Wasén (1989). In Fundamental Relationships between Microstructures and Mechanical Properties of Metal Matrix Composites, TMS, Warrendale, PA, p. 421.Google Scholar
  52. H. Lilholt and M. Taya (1987). In Proc: ICCM/6, Elsevier, p. 2.234–2.244.Google Scholar
  53. H.-T. Lin and P.F. Becher (1990). J. Amer. Ceram. Soc, 73, 1378.CrossRefGoogle Scholar
  54. W.A. Logsdon and P.K. Liaw (1986). Eng. Fract. Mech., 24, 737.CrossRefGoogle Scholar
  55. T. Mah, N.L. Hecht, D.E. McCullum, J.R. Hoenigman, H.M. Kim, A.P. Katz, and H.A. Lipsitt (1984). J. Mater. Sci., 19, 1191.CrossRefGoogle Scholar
  56. J.F. Mandell, F.J. Mcgarry, D.D. Huang, and C.G. Li (1983). Polymer Composites, 4,32.CrossRefGoogle Scholar
  57. R.F. McCartney, R.C. Richard, and P.S. Trozzo (1967). Trans. ASM, 60, 384.Google Scholar
  58. M.A. McGuire and B. Harris (1974). J. Phys. D.Appl. Phys., 7, 1788.Google Scholar
  59. M. McLean (1983). Directionally Solidified Materials for High Temperature Service, The Metals Soc, London.Google Scholar
  60. M. McLean (1985). In Proc: 5th Intl. Conf. on Composite Materials (ICCM/V), TMS-AIME, Warrendale, PA, p. 639.Google Scholar
  61. T. Morimoto, T. Yamaoka, H. Lilholt, and M. Taya (1988). J. Eng. Mater. Tech. Trans. ASME, 110, 70.CrossRefGoogle Scholar
  62. L.R. Mueller and M. Gregory (1988). Paper presented at I Annual Metals and Metals Processing Conf. of SAMPE, Cherry Hill, NJ.Google Scholar
  63. V.C. Nardone and J.R. Strife (1987). Metall. Trans., 18A, 109.Google Scholar
  64. T.G. Nieh (1984). Metall. Trans., 15A, 139.Google Scholar
  65. T.K. O’Brien (1984). Interlaminar Fracture of Composites, NASA TM-85768.Google Scholar
  66. T.K. O’Brien and K.L. Reifsnider (1981). J. Composite Materials, 15, 55.CrossRefGoogle Scholar
  67. S.L. Ogin, P.A. Smith, and P.W.R. Beaumont (1985). Composites Sci. Tech., 22, 23.CrossRefGoogle Scholar
  68. M.J. Owens and R. Dukes (1967). J. Strain Analysis, 2, 272.CrossRefGoogle Scholar
  69. M.J. Owens, T.R. Smith, and R. Dukes (1969). Plast. Polymers, 37, 227.Google Scholar
  70. R.A. Page, J.E. Hack, R. Sherman, and G.R. Leverant (1987). Met. Trans. A, 15A, 1397.Google Scholar
  71. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan (1992). Acta. Metall. Mater., 40, 2045.CrossRefGoogle Scholar
  72. P.C. Paris and F. Erdogan (1963). J. Basic Eng. Trans. ASME, 85, 528.CrossRefGoogle Scholar
  73. N.J. Pfeiffer and J.A. Alic (1978). J. Eng. Mater. Tech., 100, 32.CrossRefGoogle Scholar
  74. D.C. Phillips (1983). In Handbook of Composites, Vol. 4, North-Holland, Amsterdam, p. 472.Google Scholar
  75. L.N. Phillips (1976). Composites, 7, 7.CrossRefGoogle Scholar
  76. K.M. Prewo (1987). J. Materials Sci., 22, 2695.CrossRefGoogle Scholar
  77. K.M. Prewo, J.J. Brennan, and G.K. Layden (1986). Am. Ceram. Soc. Bull., 65, 305.Google Scholar
  78. L. Pruitt and S. Suresh (1992). J. Mater. Sci. Lett, 1356.Google Scholar
  79. D.J. Pysher, K.C. Goretta, R.S. Hodder, Jr., and R.E. Tressler (1989). J. Amer. Ceram. Soc, 12, 284.CrossRefGoogle Scholar
  80. J.P. Riggs (1985). In Encyclopedia of Polymer Science Engineering, 2nd ed., Vol. 2, John Wiley and Sons, New York, p. 640.Google Scholar
  81. K.L. Reifsnider, E.G. Henneke, W.W. Stinchcomb, and J.C. Duke (1981). In Mechanics of Composite Materials, Pergamon Press, New York, p. 399.Google Scholar
  82. J.L. Routbort, K.C. Goretta, A. Dominguez-Rodriguez, and A.R. de ArrellanoLopez (1990). J. Hard Materials, 1, 221.Google Scholar
  83. C.R. Saff, D.M. Harmon, and W.S. Johnson (1988).J. of Metals, 40, 58.Google Scholar
  84. J.K. Shang, W. Yu, and R.O. Ritchie (1988). Mater. Sci. Eng., A102, 181.Google Scholar
  85. B.F. Sørensen and J.W. Holmes (1995). Scripta Met. et Mater., 32, 1393.CrossRefGoogle Scholar
  86. N.S. Stoloff (1987). In Advances in Composite Materials, Applied Sci. Pub., London, p. 247.Google Scholar
  87. S. Suresh (1991). J. Hard Materials, 2, 29.Google Scholar
  88. S. Suresh, L.X. Han, and J.J. Petrovic (1988).J. Am. Ceram. Soc, 71, c158–c161.CrossRefGoogle Scholar
  89. R. Talreja (1985). Fatigue of Composite Materials, Technical University of Denmark, Lyngby, Denmark.Google Scholar
  90. L.G. Taylor and D.A. Ryder (1976). Composites, 1, 27.CrossRefGoogle Scholar
  91. Z. Wang, C. Laird, Z. Hashin, B.W. Rosen, and C.F. Yen (1991). J. Mater. Sci, 26, 5335.CrossRefGoogle Scholar
  92. R.C. Wetherhold and L.P. Zawada (1991). In Fractography of Glasses and Ceramics, V.D. Frechete and J.R. Varner (Eds.), Ceramic Transactions, Vol. 17, Amer. Ceram. Soc, Westerville, OH, p. 391.Google Scholar
  93. S.M. Wiederhorn and B.J. Hockey (1991). Ceramics Intl., 17, 243.CrossRefGoogle Scholar
  94. S.M. Wiederhorn, W. Liu, D.F. Carroll, and T.-J. Chuang (1988). J. Amer. Ceram. Soc, 12, 602.CrossRefGoogle Scholar
  95. D.R. Williams and M.E. Fine (1985). In Proc: Fifth Intl Conf Composite Materials (ICCM/V), TMS-AIME, Warrendale, PA, p. 639.Google Scholar
  96. D.R. Williams and M.E. Fine (1987). In Proc: 6th Intl. Conf. on Composite Materials (ICCM/VI), Vol. 2, Elsevier Applied Science, London, p. 113.Google Scholar
  97. Z.R. Xu, K.K. Chawla, A. Wolfenden, A. Neuman, G.M. Liggett, and N. Chawla (1995). Mater. Sci. & Eng. A, A203, 75.CrossRefGoogle Scholar
  98. J.-M. Yang and S.T. Chen (1992). Adv. Composites Lett., 1, 27.Google Scholar

Suggested Reading

  1. R.W. Hertzberg and J. A. Manson (1980). Fatigue of Engineering Plastics, Academic Press, New York.Google Scholar
  2. R. Talreja (1985). Fatigue of Composite Materials, Technical University of Denmark, Lyngby, Denmark.Google Scholar
  3. R. Talreja (Ed.) (1994). Damage Mechanics of Composite Materials, Elsevier, Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Krishan K. Chawla
    • 1
  1. 1.Materials and EngineeringThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations