Monotonic Strength and Fracture

  • Krishan K. Chawla


In this chapter we describe the monotonic strength and fracture behavior of composites at ambient temperatures. The term monotonic behavior means behavior under an applied stress that increases in one direction, i.e., not a cyclic loading condition. We discuss the behavior of composites under fatigue or cyclic loading as well as under conditions of creep in Chapter 13.


Fiber Length Fiber Composite Fiber Volume Fraction Fiber Strength Fiber Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K. Anand, V. Gupta, and D. Dartford (1994). Acta Metallurgica et Materialia, 42, 797.CrossRefGoogle Scholar
  2. R.J. Arsenault and R.M. Fisher (1983). Scripta Met, 17, 67.CrossRefGoogle Scholar
  3. B. Budiansky and N. Fleck (1993). J. Mech. Phys. Solids, 41, 183.CrossRefGoogle Scholar
  4. K.K. Chawla (1973a). Metallography, 6, 155.CrossRefGoogle Scholar
  5. K.K. Chawla (1973b). Philos. Mag., 28, 401.CrossRefGoogle Scholar
  6. K.K. Chawla (1993). Ceramic Matrix Composites, Chapman & Hall, London.Google Scholar
  7. K.K. Chawla and M. Metzger (1972). J. Mater. Sci., 7, 34.CrossRefGoogle Scholar
  8. K.K. Chawla, J. Singh, and J.M. Rigsbee (1986). Metallography, 19, 119.CrossRefGoogle Scholar
  9. B.D. Coleman (1958). J. Mech. Phys. Solids, 7, 60.CrossRefGoogle Scholar
  10. J. Cook and J.E. Gordon (1964). Proc. R. Soc. London, A228, 508.Google Scholar
  11. G.A. Cooper (1970). J. Mater. Sci, 5, 645.CrossRefGoogle Scholar
  12. G.A. Cooper and A. Kelly (1967). J. Mech. Phys. Solids, 15, 279.CrossRefGoogle Scholar
  13. A.H. Cottrell (1964). Proc. R. Soc, 282A, 2.Google Scholar
  14. S.C. Cowin (1979). J. Appl Mech,, 46, 832.CrossRefGoogle Scholar
  15. I.M. Daniel and O. Ishai (1994). Engineering Mechanics of Composite Materials, Oxford University Press, New York, p. 126.Google Scholar
  16. H.E. Daniels (1945). Proc. R. Soc, A183, 405.Google Scholar
  17. H.E. Dève (1997). Acta Mater., 45, 5041.CrossRefGoogle Scholar
  18. L.J. Ebert and J.D. Gadd (1965). In Fiber Composite Materials, ASM, Metals Park, OH, p. 89.Google Scholar
  19. V. Gupta, K. Anand, and M. Kryska (1994). Acta Metallurgica et Materialia, 42, 781.CrossRefGoogle Scholar
  20. J. Grape and V. Gupta (1995a). Acta Metallurgica et Materialia, 43, 2657.CrossRefGoogle Scholar
  21. J. Grape and V. Gupta (1995b). J. Composite Mater., 29, 1850.CrossRefGoogle Scholar
  22. D.K. Hale and A. Kelly (1972). Ann. Rev. Mater. Sci., 2, 405.CrossRefGoogle Scholar
  23. N.L. Hancox (1975). J. Mater. Sci, 10, 234.CrossRefGoogle Scholar
  24. O. Hoffman (1967). J. Composite Mater., 1, 200.CrossRefGoogle Scholar
  25. A. Kelly (1970). Proc. R. Soc. London, A319, 95.Google Scholar
  26. A. Kelly (1971). In The Properties of Fibre Composites, IPS Science & Technology Press, Guildford, Surrey, U.K., p. 5.Google Scholar
  27. A. Kelly and G.J. Davies (1965). Metallurgical Rev., 10, 1.CrossRefGoogle Scholar
  28. A. Kelly and H. Lilholt (1969). Philos. Mag., 20, 311.CrossRefGoogle Scholar
  29. J.R. Lager and R.R. June (1969). J. Composite Mater., 3, 48.CrossRefGoogle Scholar
  30. J.O. Outwater and M.C. Murphy (1969). In Proceedings of the 24th SPI/RP Conference, paper 11–6, Society of Plastics Industry, New York.Google Scholar
  31. M.R. Piggott (1984). In Developments in Reinforced Plastics4, Elsevier Applied Science Publishers, London, p. 131.CrossRefGoogle Scholar
  32. M.R. Piggott and B. Harris (1980). J. Mater. Sci, 15, 2523.CrossRefGoogle Scholar
  33. R.B. Pipes and B.W. Cole (1973). J. Composite Mater., 7, 246.CrossRefGoogle Scholar
  34. B.W. Rosen (1965a). In Fiber Composite Materials, American Society for Metals, Metals Park, OH, p. 58.Google Scholar
  35. B.W. Rosen (1965b). In Fiber Composite Materials, American Society for Metals, Metals Park, OH, p. 37.Google Scholar
  36. B.W. Rosen (1983). In Mechanics of Composite Materials: Recent Advances, Pergamon Press, Oxford, p. 105.Google Scholar
  37. R.E. Rowlands (1985). In Failure Mechanics of Composites, Vol. 3 of the series Handbook of Composites, North-Holland, Amsterdam, p. 71.Google Scholar
  38. H. Saghizadeh and C.K.H. Dharan (1985). American Society of Mechanical Engineering. Paper #85WA/Mats-15, presented at the Winter Annual Meeting, Miami Beach, FL.Google Scholar
  39. C.R. Schultheisz and A.M. Waas (1996). Prog. Aerospace Sci, 32, 1.CrossRefGoogle Scholar
  40. S.W. Tsai and H.T. Hahn (1980). Introduction to Composite Materials, Technomic, Westport, CT.Google Scholar
  41. S.W. Tsai and E.M. Wu (1971). J. Composite Mater., 5, 58.CrossRefGoogle Scholar
  42. M. Vogelman, R.J. Arsenault, and R.M. Fisher (1986). Met. Trans. A, 17A, 379Google Scholar
  43. A.M. Waas and C.R. Schultheisz (1996). Prog. Aerospace Sci, 32, 43.CrossRefGoogle Scholar
  44. C. Zweben and B.W. Rosen (1970). J. Mech. Phys. Solids, 18, 189.CrossRefGoogle Scholar

Suggested Reading

  1. I.M. Daniel and O. Ishai (1994). Engineering Mechanics of Composite Materials, Oxford University Press, New York.Google Scholar
  2. W.S. Johnson (Ed.) (1985). Delamination and Debonding of Materials, ASTM STP 876, American Society of Testing and Materials, Philadelphia.Google Scholar
  3. M.N. Nahas, J. Composites Tech. & Res., 8, 138.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Krishan K. Chawla
    • 1
  1. 1.Materials and EngineeringThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations