Micromechanics of Composites

  • Krishan K. Chawla

Abstract

In this chapter we consider the results of incorporating a reinforcement (fibers, whiskers, particles, etc.) in a matrix to make a composite. It is of great importance to be able to predict the properties of a composite, given the component properties and their geometric arrangement. We examine various micromechanical aspects of composites. A particularly simple case is the rule-of-mixtures, a rough tool that considers the composite properties as volume-weighted averages of the component properties. It is important to realize that the rule of mixtures works in only certain simple situations. Composite density is an example where the rule of mixtures is applied readily. In the case of mechanical properties, there are certain restrictions to its applicability. When more precise information is desired, it is better to use more sophisticated approaches based on the theory of elasticity.

Keywords

Elastic Constant Thermal Expansion Coefficient Particulate Composite Load Transfer Fiber Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Arsenault and R.M. Fisher (1983). Scripta Met., 17, 67.CrossRefGoogle Scholar
  2. E. Behrens (1968). J. Composite Mater., 2, 2.CrossRefGoogle Scholar
  3. H. Bhatt, K.Y. Donaldson, D.P.H. Hasselman, and R.T. Bhatt (1992). J. Mater. Sci., 27, 6653.CrossRefGoogle Scholar
  4. C.C. Chamis (1983). NASA Tech. Memo. 83320, presented at the 38th Annual Conference of the Society of Plastics Industry (SPI), Houston, TX.Google Scholar
  5. C.C. Chamis and G.P. Sendecky (1968). J. Composite Mater., 2, 332.CrossRefGoogle Scholar
  6. K.K. Chawla (1973a). Metallography, 6, 155.CrossRefGoogle Scholar
  7. K.K. Chawla (1973b). Philos. Mag., 28, 401.CrossRefGoogle Scholar
  8. K.K. Chawla (1974). In Grain Boundaries in Engineering Materials, Claitor’s Publishing Division, Baton Rouge, LA, p. 435.Google Scholar
  9. K.K. Chawla (1976a). J. Mater. Sci., 11, 1567.CrossRefGoogle Scholar
  10. K.K. Chawla (1976b). In Proceedings of the International Conference on Composite Materials/1975, TMS-AIME, New York, p. 535.Google Scholar
  11. K.K. Chawla and M. Met.,zger (1972). J. Mater. Sci., 7, 34.CrossRefGoogle Scholar
  12. H.L. Cox (1952). Brit. J. App. Phys., 3, 122.CrossRefGoogle Scholar
  13. R.J. Day, I.M. Robinson, M. Zakikhani and R.J. Young (1987). Polymer, 28, 1833.CrossRefGoogle Scholar
  14. R.J. Day, V. Piddock, R. Taylor, R.J. Young, and M. Zakikhani (1989). J. Mater. Sci., 24, 2898.CrossRefGoogle Scholar
  15. N.F. Dow (1963). General Electric Report No. R63-SD-61. Google Scholar
  16. J.D. Eshelby (1957). Proc. Roy. Soc., A241, 376.Google Scholar
  17. J.D. Eshelby (1959). Proc. Roy. Soc., A252, 561.Google Scholar
  18. H. Fukuda and T.W. Chou (1981). J. Comp. Mater., 15, 79.CrossRefGoogle Scholar
  19. C. Galiotis, I.M. Robinson, R.J. Young, B.J.E. Smith, and D.N. Batchelder (1985). Polym. Commun., 26, 354.Google Scholar
  20. J.C. Halpin and J.L. Kardos (1976). Polym. Eng. Sci., 16, 344.CrossRefGoogle Scholar
  21. J.C. Halpin and S.W. Tsai (1967). “Environmental Factors Estimation in Composite Materials Design,” AFML TR 67–423. Google Scholar
  22. Z. Hashin and B.W. Rosen (1964). J. Appl. Mech., 31, 233.CrossRefGoogle Scholar
  23. D.P.H. Hasselman and L.F. Johnson (1987). J. Composite Mater., 27, 508.CrossRefGoogle Scholar
  24. R. Hill (1964). J. Mech. Phys. Solids, 12, 199.CrossRefGoogle Scholar
  25. R. Hill (1965). J. Mech. Phys. Solids, 13, 189.CrossRefGoogle Scholar
  26. J.L. Kardos (1971). CRC Crit. Rev. Solid State Sci., 3, 419.Google Scholar
  27. A. Kelly (1970). In Chemical and Mechanical Behavior of Inorganic Materials, Wiley-Interscience, New York, p. 523.Google Scholar
  28. A. Kelly (1973). Strong Solids, second ed., Clarendon Press, Oxford, p. 157.Google Scholar
  29. A. Kelly and H. Lilbolt (1971). Philos. Mag., 20, 175.Google Scholar
  30. E.H. Kerner (1956). Proc. Phys. Soc. London, B69, 808.Google Scholar
  31. A.E.H. Love (1952). A Treatise on the Mathematical Theory of Elasticity, 4th ed., Dover, New York, p. 144.Google Scholar
  32. G.D. Marom and A. Weinberg (1975). J. Mater. Sci., 10, 1005.CrossRefGoogle Scholar
  33. T. mon and K. Tanaka (1973). Acta Met.,21, 571.CrossRefGoogle Scholar
  34. V.C. Nardone and K.M. Prewo (1986). Scripta Met.,., 20, 43.CrossRefGoogle Scholar
  35. L.E. Nielsen (1974). Mechanical Properties of Polymers and Composites, Vol. 2, Marcel Dekker, New York.Google Scholar
  36. J.F. Nye (1969). Physical Properties of Crystals, Oxford University Press, London, p. 131.Google Scholar
  37. H. Poritsky (1934). Physics, 5, 406.CrossRefGoogle Scholar
  38. A. Reuss (1929). Z. Angew. Math. Mech., 9, 49.CrossRefGoogle Scholar
  39. B.W. Rosen (1973). Composites, 4, 16.CrossRefGoogle Scholar
  40. B.W. Rosen and Z. Hashin (1970). Int. J. Eng. Sci., 8, 157.CrossRefGoogle Scholar
  41. L.S. Schadler and C. Galiotis (1995). International Materials Reviews 40, 116.CrossRefGoogle Scholar
  42. R.A. Schapery (1969). J. Composite Mater., 2, 311.Google Scholar
  43. D.M. Schuster and E. Scala (1964). Trans. Met.,. Soc.-AIME, 230, 1635.Google Scholar
  44. Y. Termonia (1987). J. Mater. Sci., 11, 504.CrossRefGoogle Scholar
  45. S. Timoshenko and J.N. Goodier (1951). Theory of Elasticity, McGraw-Hill, New York, p. 416.Google Scholar
  46. P.S. Turner (1946). J. Res. Natl. Bur. Stand., 37, 239.CrossRefGoogle Scholar
  47. M. Vogelsang, R.J. Arsenault, and R.M. Fisher (1986). Met.,. Trans. A, 7A, 379.CrossRefGoogle Scholar
  48. W. Voigt (1910). Lehrbuch der Kristallphysik, Teubner, Leipzig.Google Scholar
  49. R.U. Vaidya and K.K. Chawla (1994). Composites Science and Technology, 50, 13.CrossRefGoogle Scholar
  50. R.U. Vaidya, R. Venkatesh, and K.K. Chawla (1994). Composites, 25, 308.CrossRefGoogle Scholar
  51. J.M. Whitney (1973). J. Struct. Div., 113.Google Scholar
  52. Z.R. Xu, K.K. Chawla, R. Mitra, and M.E. Fine (1994). Scripta Met., et Mater., 31, 1525.CrossRefGoogle Scholar
  53. X. Yang, X. Hu, R.J. Day, and R.J. Young (1992). J. Mater. Sci., 27, 1409.CrossRefGoogle Scholar
  54. R.J. Young, R.J. Day, and M. Zakikhani (1990). J. Mater. Sci., 25, 127.CrossRefGoogle Scholar
  55. R.J. Young (1994). In High-Performance Composites: Commonalty of Phenomena,Google Scholar
  56. K.K. Chawla, P.K. Liaw, and S.G. Fishman (Eds.), TMS, Warrendale, PA, p. 263.Google Scholar

Suggested Reading

  1. B.D. Agarwal and L.J. Broutman (1980). Analysis and Performance of Fiber Composites, John Wiley & Sons, New York.Google Scholar
  2. A. Kelly (1973). Strong Solids, 2nd ed., Clarendon Press, Oxford.Google Scholar
  3. S. Nemat-Nasser and M. Hori (1993). Micromechanics: Overall Properties of Heterogenous Materials, North-Holland, Amsterdam.Google Scholar
  4. M.R. Piggott (1980). Load-Bearing Fibre Composites, Pergamon Press, Oxford.Google Scholar
  5. V.K. Tewary (1978). Mechanics of Fibre Composites, Halsted Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Krishan K. Chawla
    • 1
  1. 1.Materials and EngineeringThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations