Skip to main content

Macromolecules in Solution

  • Chapter
The Physical Basis of Biochemistry
  • 510 Accesses

Abstract

We have already described the solvent-solute structure in aqueous solutions of small polar and non-polar molecules. The view of the disturbance of the normal hexagonal structure of liquid water by these small solutes can serve as a model for solutions of macromolecules, which, to a reasonable approximation, may be treated as a chain of small solute molecules attached to each other. Such molecules are polymers. Polymers of a single component or monomer are called homopolymers (A n ). Copolymers are composed of two or more monomers. Copolymers can be random (AAABBABBBA...) or ordered (ABABABAB or ABCABCABC). Polymers of these types are mainstays of the chemical industry, and their solubility or insolubility in aqueous environments can now be predicted with a high degree of accuracy, allowing us to properly formulate the polymerizing mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

General

  • Sun S. F. (1994) Physical Chemistry of Macromolecules, Basic Principles and Issues. John Wiley and Sons, New York.

    Google Scholar 

  • Tanford C. (1961) Physical Chemistry of Macromolecules. John Wiley and Sons, New York.

    Google Scholar 

Protein Folding

  • Creighton T. E., ed. (1992) Protein Folding. W. H. Freeman and Company, New York.

    Google Scholar 

  • Dill K. A. (1985) Theory for the folding and stability of globular proteins. Biochemistry 24: 1501–9.

    Article  PubMed  CAS  Google Scholar 

  • Elber R., and Karplus M. (1987) Multiple conformational states of proteins: A molecular dynamics analysis of myoglobin. Science 253: 318–21.

    Article  Google Scholar 

  • Fersht A. R., and Serrano L. (1993) Principles of protein stability derived from protein engineering experiments. Current Opinion in Structural Biology, 3: 7583.

    Article  Google Scholar 

  • Kim P. S., and Baldwin R. L. (1982) Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Ann. Rev. Biochem., 51: 459–89.

    Article  PubMed  CAS  Google Scholar 

  • Matthew C. R. (1993) Pathways of protein folding. Ann. Rev. Biochem., 62: 653–83.

    Article  Google Scholar 

  • Richards F. M. (1991) The protein folding problem. Sci. Am., 264 (1): 54–63.

    Article  PubMed  CAS  Google Scholar 

  • Rose G. D., and Wolfenden (1993) Hydrogen bonding, hydrophobicity, packing and protein folding. Ann. Rev. Biophys. Biomol. Struct., 22: 381–415.

    Article  CAS  Google Scholar 

  • Scholtz J. M., and Baldwin R. L. (1992) The mechanism of a-helix formation by peptides. Ann. Rev. Biophys. Biomol. Struct., 21: 95–118.

    Article  CAS  Google Scholar 

  • Shortle D. (1989) Probing the determinants of protein folding and stability with amino acid substitutions. J. Biol. Chem., 264: 5315–18.

    PubMed  CAS  Google Scholar 

  • Shortle D. (1993) Denatured states of proteins and their roles in folding and stability. Current Opinion in Structural Biology, 3: 66–74.

    Article  CAS  Google Scholar 

  • Taubes G. (1996) Misfolding the way to disease. Science, 271: 1493–5.

    Article  PubMed  CAS  Google Scholar 

  • Timasheff S. N. (1993) The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Ann. Rev. Biophys. Biomol. Struct., 22: 67–97.

    Article  CAS  Google Scholar 

The Amyloidoses

  • Bergethon P. R., Sabin T. D., Lewis D., Simms R. W., Cohen A. S., and Skinner M. (1996) Improvement in the polyneuropathy associated with familial amyloid polyneuropathy after liver transplantation. Neurology, 47: 944–51.

    Article  PubMed  CAS  Google Scholar 

  • Booth D. R., Sunde M., Bellotti V., Robinson C. V., Hutchinson W. L., Fraser P. E., Hawkins P. N., Dobson C. M., Radford S. E., Blake C. C. F., and Pepys M. B. (1997) Instability, unfolding and aggregation of human lysozyme varients underlying amyloid fibrillogenesis. Nature, 385: 787–93.

    Article  PubMed  CAS  Google Scholar 

  • Eigen M. (1993) Viral quasi-species. Sci. Am., 269 (1): 42–49.

    Article  PubMed  CAS  Google Scholar 

  • Kelly J. W., and Lansbury P. T. (1994) A chemical approach to elucidate the mechanism of transthyretin and (3-protein amyloid fibril formation. Amyloid: Int. J. Exp. Clin. Invest., 1: 186–205.

    CAS  Google Scholar 

  • Kemper T. L. (1994) Neuroanatomical and Neuropatho-logical Change During Aging and Dementia, in Clinical Neurology of Aging, 2d ed., Albert M. L., and Knoefel J. E., eds., 3–67. Oxford University Press, Oxford.

    Google Scholar 

  • Pepys M. B., Hawkins P. N., Booth D. R., Vigushin D. M., Tennent G. A., Soutar A. K., Totty N., Nguyent O., Blake C. C. F., Terry C. J., Feest T. G., Zahn A. M., and Hsuan J. J. (1993) Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature, 362: 553–7.

    Article  PubMed  CAS  Google Scholar 

  • Perutz M. F. (1997) Mutations make enzyme polymerize. Nature, 385: 773–5.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner S. B., and DeArmond S. J. (1995) Prion protein amyloid and neurodegeneration. Amyloid: Int. J. Exp. Clin. Invest., 2: 39–65.

    CAS  Google Scholar 

  • Selkoe D. J. (1991) Amyloid protein and Alzheimer’s disease. Sci. Am., 265 (5): 68–78.

    Article  PubMed  CAS  Google Scholar 

  • Steinhart C. (1996) Sick cows, protein geometry and politics. J. Chem. Ed., 73: A232–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bergethon, P.R. (1998). Macromolecules in Solution. In: The Physical Basis of Biochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2963-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2963-4_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2965-8

  • Online ISBN: 978-1-4757-2963-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics