The Theorems of Montel and Vitali

  • Reinhold Remmert
Part of the Graduate Texts in Mathematics book series (GTM, volume 172)

Abstract

In infinitesimal calculus, the principle of selection of convergent sequences in bounded subsets M of ℝ n is crucial: Every sequence of points in M has a subsequence that converges in ℝ n (Bolzano-Weierstrass property). The extension of this accumulation principle to sets of functions is fundamental for many arguments in analysis. But caution is necessary: There are sequences of real-analytic functions from the interval [0, 1] into a fixed bounded interval that have no convergent subsequences. A nontrivial example is the sequence sin 2nπx; cf. 1.1.

Keywords

Holomorphic Function Normal Family Convergent Subsequence Riemann Mapping Theorem Identity Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Bl]
    BLASCHKE, W.: Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen, Ber. Verh. Königl. Sächs. Ges. Wiss. Leipzig 67, 194–200 (1915); Ges. Werke 6, 187–193.Google Scholar
  2. [Bu]
    BURCKEL, R. B.: An Introduction to Classical Complex Analysis, vol. 1, Birkhäuser, 1979.Google Scholar
  3. [Ca]
    CARLEMAN, T.: Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen, Ark. för Mat. Astron. Fys. 17, no. 9 (1923).Google Scholar
  4. [CL]
    CARATHÉODORY, C. and E. LANDAU: Beiträge zur Konvergenz von Funktionenfolgen, Sitz. Ber. Königl. Preuss. Akad. Wiss., Phys.-math. Kl. 26, 587–613 (1911); CARATHÉODORY’S Ges. Math. Schriften 3, 13–44; LANDAU’s Coll. Works 4, 349–375.Google Scholar
  5. [G]
    GOLITSCHEK, M. V.: A short proof of Müntz’s theorem, Journ. Approx. Theory 39, 394–395 (1983).MATHCrossRefGoogle Scholar
  6. [HS]
    HERMITE, C. and T.-J. STIELTJES: Correspondance d’Hermite et de Stieltjes, vol. 2, Gauthier-Villars, Paris, 1905.Google Scholar
  7. [Hi]
    HILBERT, D.: Über das Dirichletsche Prinzip, Jber. DMV 8, 184–188 (1899); Ges. Abh. 3, 10–14.Google Scholar
  8. [J]
    JENTZSCH, R.: Untersuchungen zur Theorie der Folgen analytischer Funktionen, Acta Math. 41, 219–251 (1917).MathSciNetMATHCrossRefGoogle Scholar
  9. [K]
    KOEBE, P.: Ueber die Uniformisierung beliebiger analytischer Kurven, Dritte Mitteilung, Nachr. Königl. Ges. Wiss. Göttingen, Math. phys. Kl. 1908, 337–358.Google Scholar
  10. [Li]
    LINDELOF, E.: Démonstration nouvelle d’un théorème fondamental sur les suites de fonctions monogènes, Bull. Soc. Math. France 41, 171–178 (1913).MathSciNetGoogle Scholar
  11. [LR]
    LÖWNER, K. and T. RadÔ: Bemerkung zu einem Blaschkeschen Konvergenzsatze, Jber. DMV 32, 198–200 (1923).MATHGoogle Scholar
  12. [Mol]
    MONTEL, P.: Sur les suites infinies de fonctions, Ann. Sci. Éc. Norm. Sup. 24, 233–334 (1907).MathSciNetMATHGoogle Scholar
  13. Mo2] MONTEL, P.: Leçons sur les familles normales de fonctions analytiques et Google Scholar
  14. leurs applications,Gauthier-Villars, Paris, 1927; reissued 1974 by Chelsea Publ. Co., New York.Google Scholar
  15. [Mü]
    MÜNTZ, C. H.: Über den Approximationssatz von Weierstraß, Math. Abh. H. A. Schwarz gewidmet, 303–312, Julius Springer, 1914.Google Scholar
  16. [O]
    OSGOOD, W. F.: Note on the functions defined by infinite series whose terms are analytic functions of a complex variable; with corresponding theorems for definite integrals, Ann. Math.,2nd ser., 3, 25–34 (1901–1902).Google Scholar
  17. [R]
    PORTER, M. B.: Concerning series of analytic functions, Ann. Math.,2nd ser., 6, 190–192 (1904–1905).Google Scholar
  18. [Ro]
    ROGERS, L. C. G.: A simple proof of Müntz’s theorem, Math. Proc. Cambridge Phil. Soc. 90, 1–3 (1981).MATHCrossRefGoogle Scholar
  19. [Rud]
    RUDIN, W.: Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.MATHGoogle Scholar
  20. [Run]
    RUNGE, C.: Zur Theorie der analytischen Functionen, Acta Math. 6, 245–248 (1885).MathSciNetMATHCrossRefGoogle Scholar
  21. [St]
    STIELTJES, T.-J: Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse 8, 1–22 (1894).MathSciNetCrossRefGoogle Scholar
  22. [SZ]
    SAKS, S. and A. ZYGMUND: Analytic Functions, 3rd ed., Elsevier, Warsaw, 1971.Google Scholar
  23. [V]
    VITALI, G.: Sopra le serie de funzioni analitiche, Rend. Ist. Lombardo, 2. Ser. 36, 772–774 (1903) and Ann. Mat. Pur. Appl., 3. Ser. 10, 65–82 (1904).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Reinhold Remmert
    • 1
  1. 1.Mathematisches InstitutWestfälische Wilhelms—Universität MünsterMünsterGermany

Personalised recommendations