Skip to main content

The Theorems of Montel and Vitali

  • Chapter
  • 3488 Accesses

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 172))

Abstract

In infinitesimal calculus, the principle of selection of convergent sequences in bounded subsets M of ℝn is crucial: Every sequence of points in M has a subsequence that converges in ℝn (Bolzano-Weierstrass property). The extension of this accumulation principle to sets of functions is fundamental for many arguments in analysis. But caution is necessary: There are sequences of real-analytic functions from the interval [0, 1] into a fixed bounded interval that have no convergent subsequences. A nontrivial example is the sequence sin 2nπx; cf. 1.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. BLASCHKE, W.: Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen, Ber. Verh. Königl. Sächs. Ges. Wiss. Leipzig 67, 194–200 (1915); Ges. Werke 6, 187–193.

    Google Scholar 

  2. BURCKEL, R. B.: An Introduction to Classical Complex Analysis, vol. 1, Birkhäuser, 1979.

    Google Scholar 

  3. CARLEMAN, T.: Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen, Ark. för Mat. Astron. Fys. 17, no. 9 (1923).

    Google Scholar 

  4. CARATHÉODORY, C. and E. LANDAU: Beiträge zur Konvergenz von Funktionenfolgen, Sitz. Ber. Königl. Preuss. Akad. Wiss., Phys.-math. Kl. 26, 587–613 (1911); CARATHÉODORY’S Ges. Math. Schriften 3, 13–44; LANDAU’s Coll. Works 4, 349–375.

    Google Scholar 

  5. GOLITSCHEK, M. V.: A short proof of Müntz’s theorem, Journ. Approx. Theory 39, 394–395 (1983).

    Article  Google Scholar 

  6. HERMITE, C. and T.-J. STIELTJES: Correspondance d’Hermite et de Stieltjes, vol. 2, Gauthier-Villars, Paris, 1905.

    MATH  Google Scholar 

  7. HILBERT, D.: Über das Dirichletsche Prinzip, Jber. DMV 8, 184–188 (1899); Ges. Abh. 3, 10–14.

    Google Scholar 

  8. JENTZSCH, R.: Untersuchungen zur Theorie der Folgen analytischer Funktionen, Acta Math. 41, 219–251 (1917).

    Article  MathSciNet  Google Scholar 

  9. KOEBE, P.: Ueber die Uniformisierung beliebiger analytischer Kurven, Dritte Mitteilung, Nachr. Königl. Ges. Wiss. Göttingen, Math. phys. Kl. 1908, 337–358.

    Google Scholar 

  10. LINDELOF, E.: Démonstration nouvelle d’un théorème fondamental sur les suites de fonctions monogènes, Bull. Soc. Math. France 41, 171–178 (1913).

    Article  MathSciNet  Google Scholar 

  11. LÖWNER, K. and T. RadÔ: Bemerkung zu einem Blaschkeschen Konvergenzsatze, Jber. DMV 32, 198–200 (1923).

    MATH  Google Scholar 

  12. MONTEL, P.: Sur les suites infinies de fonctions, Ann. Sci. Éc. Norm. Sup. 24, 233–334 (1907).

    Article  MathSciNet  Google Scholar 

  13. Mo2] MONTEL, P.: Leçons sur les familles normales de fonctions analytiques et

    Google Scholar 

  14. leurs applications,Gauthier-Villars, Paris, 1927; reissued 1974 by Chelsea Publ. Co., New York.

    Google Scholar 

  15. MÜNTZ, C. H.: Über den Approximationssatz von Weierstraß, Math. Abh. H. A. Schwarz gewidmet, 303–312, Julius Springer, 1914.

    Google Scholar 

  16. OSGOOD, W. F.: Note on the functions defined by infinite series whose terms are analytic functions of a complex variable; with corresponding theorems for definite integrals, Ann. Math.,2nd ser., 3, 25–34 (1901–1902).

    Article  MathSciNet  Google Scholar 

  17. PORTER, M. B.: Concerning series of analytic functions, Ann. Math.,2nd ser., 6, 190–192 (1904–1905).

    Article  MathSciNet  Google Scholar 

  18. ROGERS, L. C. G.: A simple proof of Müntz’s theorem, Math. Proc. Cambridge Phil. Soc. 90, 1–3 (1981).

    Article  Google Scholar 

  19. RUDIN, W.: Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.

    MATH  Google Scholar 

  20. RUNGE, C.: Zur Theorie der analytischen Functionen, Acta Math. 6, 245–248 (1885).

    Article  MathSciNet  Google Scholar 

  21. STIELTJES, T.-J: Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse 8, 1–22 (1894).

    Article  MathSciNet  Google Scholar 

  22. SAKS, S. and A. ZYGMUND: Analytic Functions, 3rd ed., Elsevier, Warsaw, 1971.

    MATH  Google Scholar 

  23. VITALI, G.: Sopra le serie de funzioni analitiche, Rend. Ist. Lombardo, 2. Ser. 36, 772–774 (1903) and Ann. Mat. Pur. Appl., 3. Ser. 10, 65–82 (1904).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Remmert, R. (1998). The Theorems of Montel and Vitali. In: Classical Topics in Complex Function Theory. Graduate Texts in Mathematics, vol 172. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2956-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2956-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98221-2

  • Online ISBN: 978-1-4757-2956-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics