The Gamma Function

  • Reinhold Remmert
Part of the Graduate Texts in Mathematics book series (GTM, volume 172)

Abstract

The problem of extending the function n! to real arguments and finding the simplest possible “factorial function” with value n! at n ∈ ℕ led Euler in 1729 to the Г-function. He gave the infinite product
$$\Gamma \left( {z + 1} \right): = \frac{{1 \cdot {2^z}}}{{1 + z}} \cdot \frac{{{2^{1 - z}}{3^z}}}{{2 + z}} \cdot \frac{{{3^{1 - z}}{4^z}}}{{3 + z}} \cdot \ldots = \prod\limits_{\nu = 1}^\infty {{{\left( {1 + \frac{1}{\nu }} \right)}^z}{{\left( {1 + \frac{z}{\nu }} \right)}^{ - 1}}} $$
as a solution.l Euler considered only real arguments; Gauss, in 1811, admitted complex numbers as well. On 21 November 1811, he wrote to Bessel (1784–1846), who was also concerned with the problem of general factorials, “Will man sich aber nicht... zahllosen Paralogismen und Paradoxen und Widersprüchen blossstellen, so muss 1∙2∙3.... x nicht als Definition von Пx gebraucht werden, da eine solche nur, wenn x eine ganze Zahl ist, einen bestimmten Sinn hat, sondern man muss von einer höheren allgemein, selbst auf imaginäre Werthe von x anwendbaren, Definition ausgehen, wovon... jene als specieller Fall erscheint. Ich habe folgenden gewählt
$$\prod x = \frac{{1.2.3 \ldots k.k^x }} {{x + 1.x + 2.x + 3 \ldots x + k'}}$$
wenn k unendlich wird.” (But if one doesn’t want... countless fallacies and paradoxes and contradictions to be exposed, 1∙2∙3... x must not be used as the definition of Пx, since such a definition has a precise meaning only when x is an integer; rather, one must start with a definition of greater generality, applicable even to imaginary values of x, of which that one occurs as a special case. I have chosen the following... when k becomes infinite.) (Cf. [G1], pp. 362–363.) We will understand in §2.1 why, in fact, Gauss had no other choice.

Keywords

Functional Equation Gamma Function Uniqueness Theorem Beta Function Real Argument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [A]
    Artin, E.: The Gamma Function, trans. M. Butler, Holt, Rinehart and Winston, New York, 1964.MATHGoogle Scholar
  2. [Bi]
    Bieberbach, L.: Theorie der gewöhnlichen Differentialgleichungen, Grdl. Math. Wiss. 66, 2nd ed., Springer, 1965.Google Scholar
  3. [B]
    Binet, M. J.: Mémoire sur les intégrales définies Eulériennes, Journ. de l’École Roy. Polyt 16, 123–343 (1839).Google Scholar
  4. [BM]
    Bohr, H. and J. Mollerup: Laerebog i matematisk Analyse, vol. 3, Copen-hagen, 1922.Google Scholar
  5. [D]
    Dirichlet, P. G.: Über eine neue Methode zur Bestimmung vielfacher Integrale, Abh. Königl. Preuss. Akad. Wiss 1839, 61–79; Werke 1, 393410.Google Scholar
  6. [Eu]
    Leonhardi Euleri Opera omnia, sub auspiciis societatis scientarium natu-ralium Helveticae, Series I-IV A, 1911-.Google Scholar
  7. [G1]
    Gauss, C. F.: Letter to Bessel, Werke 10, Part 1, 362–365.Google Scholar
  8. [G2]
    Gauss, C. F.: Disquisitiones generales circa seriam infinitam Werke 3, 123–162.Google Scholar
  9. [Gu]
    Gudermann, C.: Additamentum ad functionis r(a) = fô e-x • xa-lax theoriam, Journ. reine angew. Math 29, 209–212 (1845).MATHCrossRefGoogle Scholar
  10. [H]
    Hankel, H.: Die Eulerschen Integrale bei unbeschränkter Variabilität des Argumentes, Zeitschr. Math. Phys 9, 1–21 (1864).Google Scholar
  11. [Ha]
    Hausdorff, F.: Zum Hölderschen Satz über r(x), Math. Ann 94, 244–247 (1925).MathSciNetMATHCrossRefGoogle Scholar
  12. [Hö]
    Holder, O.: Ueber die Eigenschaft der Gammafunktion keiner algebrais-chen Differentialgleichungen zu genügen, Math. Ann 28, 1–13 (1887).MathSciNetCrossRefGoogle Scholar
  13. [J]
    Jacobi, C. G. J.: Demonstratio formulae fô wa-1(1–w) b-1 dw =…, Journ. reine angew. Math. 11, p. 307 (1833); Ges. Werke 6, 62–63.Google Scholar
  14. [Je]
    Jensen: An elementary exposition of the theory of the gamma function, Ann. Math 17 (2nd ser.), 1915–16, 124–166.Google Scholar
  15. [Kn]
    Kneser, H.: Funktionentheorie, Vandenhoeck and Ruprecht 1958.Google Scholar
  16. [Ku]
    Kummer, E. E.: Beitrag zur Theorie der Function r(x) = Journ. reine angew. Math 35, 1–4 (1847): Coll. Papers II, 325–328.Google Scholar
  17. [L1]
    Legendre, A. M.: Exercices de calcul intégral, 3 vols., Paris 1811, 1816, and 1817.Google Scholar
  18. [L2]
    Legendre, A. M.: Traité des fonctions elliptiques et des intégrales Eulériennes, 3 vols., Paris 1825, 1826, and 1828.Google Scholar
  19. [Li]
    Lindelöf, E.: Le calcul des résidus, Paris 1905; reprinted 1947 by Chelsea Publ. Co., New York; Chap. I V in particular.Google Scholar
  20. [M]
    Moore, E. H.: Concerning transcendentally transcendental functions, Math. Ann. 48, 49–74 (1897).MATHGoogle Scholar
  21. [Ne]
    Newman, F. W.: On F(a) especially when a is negative, Cambridge and Dublin Math. Journ 3, 57–60 (1848).Google Scholar
  22. [Ni]
    Nielsen, N.: Handbuch der Theorie der Gammafunktion,first printing Leipzig 1906, reprinted 1965 by Chelsea Publ. Co., New York.Google Scholar
  23. [O]
    Ostrowski, A.: Zum Hölderschen Satz über r(x), Math. Ann. 94, 248–251 (1925); Coll. Math. Pap 4, 29–32.Google Scholar
  24. [Pi]
    Pincherle, S.: Sulla funzioni ipergeometriche generalizzate, II, Atti. Rend. Reale Accad. Lincei (4), 792–799 (1889), Opere scelte I, 231–238.Google Scholar
  25. [Pl]
    Plana, J.: Note sur une nouvelle expression analytique des nombres Bernoul-liens, propre à exprimer en termes finis la formule générale pour la sommation des suites, Mem. Reale Accad. Sci. Torino 25, 403–418 (1820).Google Scholar
  26. [Pr]
    Prym, F. E.: Zur Theorie der Gammafunction, Journ. reine angew. Math 82, 165–172 (1876).Google Scholar
  27. [Rei]
    Remmert, R.: Wielandt’s theorem about the F-function, Amer. Math. Monthly 103, 214–220 (1996).MathSciNetMATHCrossRefGoogle Scholar
  28. [Re2]
    Remmert, R.: Wielandt’s characterization of the P-function, in Math. Works of Helmut Wielandt, vol. 2, 265–268 (1996).Google Scholar
  29. [Scha]
    Scharlau, W. (ed.): Rudolph Lipschitz, Briefwechsel mit Cantor, Dedekind, Helmholtz, Kronecker, Weierstrass und anderen, Dok. Gesch. Math. 2, DMV, Vieweg u. Sohn, 1986.Google Scholar
  30. [Sch F]
    Schäfke, F. W. and A. Finsterer: On Lindelöf’s error bound for Stirling’s series, Journ. reine angew. Math 404, 135–139 (1990).MATHGoogle Scholar
  31. [Sch S]
    Schäfke, F. W. and A. Sattler: Restgliedabschätzungen für die Stirlingsche Reihe, Note. Mat. X, Suppl. no. 2, 453–470 (1990).Google Scholar
  32. [Schl]
    Schlomilch, O.: Einiges über die Eulerischen Integrale der zweiten Art, Arch. Math. Phys 4, 167–174 (1843).Google Scholar
  33. [SG]
    Sansone, G. and J. Gerretsen: Lectures on the Theory of Functions of a Complex Variable, vol. I, P. Noordhoff-Groningen, 1960.Google Scholar
  34. [St]
    Stieltjes, T.-J.: Sur le développement de log F(a), Journ. Math. Pur. Appl. (4)5, 425–444 (1889); Œuvres 2, Noordhoff, 1918, 211–230; 2nd ed., Springer, 1993, 215–234.Google Scholar
  35. [T]
    Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function, Oxford University Press, 1951.Google Scholar
  36. [W]
    Walter, W.: Analysis I, Grundwissen 3, Springer, 1985, 2nd ed. 1990.Google Scholar
  37. [Wei]
    Weierstrass, K.: Über die Theorie der analytischen Facultäten, Journ. reine angew. Math. 51, 1–60 (1856), Math. Werke 1, 153–221.Google Scholar
  38. [We2]
    Weierstrass, K.: Zur Theorie der eindeutigen analytischen Functionen, Math. Werke 2, 77–124.Google Scholar
  39. [WW]
    Whittaker, E. T. and G. N. Watson: A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, 1927, Chap. X II in particular.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Reinhold Remmert
    • 1
  1. 1.Mathematisches InstitutWestfälische Wilhelms—Universität MünsterMünsterGermany

Personalised recommendations