Curves That Fill Space

  • David Salomon


A space-filling curve completely fills up part of space by passing through every point in that part. It does that by changing direction repeatedly. We will only discuss curves that fill up part of the two-dimensional plane, but the concept of a space-filling curve exists for any number of dimensions.


Node Number Production Rule Line Length Turn Angle Straight Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson, H. and A. A. diSessa (1982) Turtle Geometry, Cambridge, MA, MIT Press.Google Scholar
  2. Backus, J. W. (1959) “The Syntax and Semantics of the Proposed International Algebraic Language,” in Proceedings of the International Conference on Information processing, pp. 125–132, UNESCO.Google Scholar
  3. Chomsky, N. (1956) “Three Models for the Description of Language,” IRE Transactions on Information Theory 2(3): 113–124.zbMATHCrossRefGoogle Scholar
  4. Cole, A. J. (1985) “A Note on Peano Polygons and Gray Codes,” International Journal of Computer Mathemathics 18:3–13.zbMATHCrossRefGoogle Scholar
  5. Cole, A. J. (1986) “Direct Transformations Between Sets of Integers and Hilbert Polygons,” International Journal of Computer Mathemathics 20:115–122.zbMATHCrossRefGoogle Scholar
  6. Gray, F. (1953) U. S. patent 2632058, March.Google Scholar
  7. Hilbert, D. (1891) “Ueber Stetige Abbildung Einer Linie auf ein Flachenstuck,” Math. Annalen 38:459–460.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Lindenmayer, A. (1968) “Mathematical Models for Cellular Interaction in Development,” Journal of Theoretical Biology 18:280–315.CrossRefGoogle Scholar
  9. Naur, P. et al. (1960) “Report on the Algorithmic Language ALGOL 60,” Communications of the ACM 3(5):299–314, revised in Communications of the ACM 6(1):1–17.Google Scholar
  10. Peano, G. (1890) “Sur Une Courbe Qui Remplit Toute Une Aire Plaine,” Math. Annalen 36:157–160.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Prusinkiewicz, Przemyslav (1986) Graphical Applications of L-systems, in Proc. of Graphics Interface ‘86 — Vision Interface ‘86, pp.247–253.Google Scholar
  12. Prusinkiewicz, P., and A. Lindenmayer (1990) The Algorithmic Beauty of Plants, New York, Springer Verlag.zbMATHCrossRefGoogle Scholar
  13. Prusinkiewicz, P., A. Lindenmayer, and F. D. Fracchia (1991) “Synthesis of Space-Filling Curves on the Square Grid,” in.Fractals in the Fundamental and Applied Sciences, edited by Peitgen, H.-O. et al., Amsterdam, Elsevier Science Publishers, pp. 341–366.Google Scholar
  14. Sierpinski, W. (1912) “Sur Une Nouvelle Courbe Qui Remplit Toute Une Aire Plaine,” Bull. Acad. Sci. Cracovie Serie A.462–478.Google Scholar
  15. Sagan, Hans (1994) Space-Filling Curves, New York, Springer Verlag.zbMATHCrossRefGoogle Scholar
  16. Smith, Alvy Ray (1984) “Plants, Fractals and Formal Languages,” Computer Graphics 18(3):1–10.CrossRefGoogle Scholar
  17. Szilard, A. L. and R. E. Quinton (1979) “An Interpretation for D0L Systems by Computer Graphics,” The Science Terrapin 4:8–13.Google Scholar
  18. Wirth, N. (1976) Algorithms + Data Structures = Programs, Englewood Cliffs, NJ, Prentice-Hall, 2nd Ed.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • David Salomon
    • 1
  1. 1.Department of Computer ScienceCalifornia State UniversityNorthridgeUSA

Personalised recommendations