Behavioral Pharmacology of Amphetamines

  • George V. Rebec
Chapter

Abstract

Originally sold as a bronchodilator in the early 1930s, amphetamine soon became known for its stimulant effects on behavior (Angrist, 1983). The drug has been used to overcome fatigue and to improve performance on certain types of motor or cognitive tasks (Koelega, 1993; Laties & Weiss, 1981). These stimulant effects often occur in conjunction with feelings of euphoria, a combination that has led to the widespread abuse of amphetamine and its analogs, including a pure form of methamphetamine known as “ice,” which emerged on the recreational drug scene in the late 1980s (Cho, 1990). Invariably, abuse of these drugs induces a psychosis that is clinically similar to paranoid schizophrenia (Akiyama, Hamamura, Ujike, Kanzaki, & Otsuki, 1991; Snyder, 1973).

Keywords

Nucleus Accumbens Brain Research Dopamine Release Behavioral Sensitization Extracellular Dopamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, S. H., Stinus, L., LeMoal, M., & Cador, M. (1995). Social deprivation enhances the vulnerability of male Wistar rats to stressor-and amphetamine-induced behavioral sensitization.Psychopharmacology, 117, 116–124.PubMedCrossRefGoogle Scholar
  2. Akiyama, K., Hamamura, T., Ujike, H., Kanzaki, A., & Otsuki, S. (1991). Methamphetamine psychosis as a model of relapse of schizophrenia-A behavioral and biochemical study in the animal model. In T. Nakazawa (Ed.),Biological basis of schizophrenic disorders (Vol. 14, pp. 169–184 ). Tokyo: Japan Scientific Societies Press.Google Scholar
  3. Akiyama, K., Kanzaki, A., Tsuchida, K., & Ujike, H. (1994). Methamphetamine-induced behavioral sensitization and its implications for relapse of schizophrenia.Schizophrenia Research, /2, 251–257.Google Scholar
  4. Aldridge, J. W, Berridge, K. C., Herman, M., & Zimmer L. (1993). Neuronal coding of serial order: Syntax of grooming in the neostriatum.Psychological Science, 4, 391–395.CrossRefGoogle Scholar
  5. Angrist, B. (1983). Psychoses induced by central nervous system stimulants and related drugs. In I. Creese (Ed.),Stimulants: neurochemical, behavioral, and clinical perspectives (pp. 1–30 ). New York: Raven.Google Scholar
  6. Antelman, S. M., & Chiodo, L. A. (1983). Amphetamine as a stressor. In I. Creese (Ed.),Stimulants: neurochemical, behavioral and clinical perspectives (pp. 269–299 ). New York: Raven.Google Scholar
  7. Bardo, M. T., Bowling, S. L., Rowlett, J. K., Mander-scheid, P, Buxton, S. T., & Dwoskin, L. P. (1995). Environmental enrichment attenuates locomotor sensitization, but not in vitro dopamine release, induced by amphetamine.Pharmacology, Biochemistry and Behavior, 51, 397–405.CrossRefGoogle Scholar
  8. Bowling, S. L., Rowlett, J. K., & Bardo, M. T. (1993). The effect of environmental enrichment on amphetamine-stimulated locomotor activity, dopamine synthesis and dopamine release.Neuropharmacology, 32, 885–893.PubMedCrossRefGoogle Scholar
  9. Braestrup, C. (1977). Changes in drug-induced stereotyped behavior after 6-OHDA lesions in noradrenaline neurons.Psychopharmacology, 51, 199–204.PubMedCrossRefGoogle Scholar
  10. Breese, G. R., Cooper, B. R., & Mueller, R. A. (1974). Evidence for involvement of 5-hydroxytryptamine in the actions of amphetamine.British Journal of Pharmacology, 52, 307–314.PubMedCrossRefGoogle Scholar
  11. Carelli, R. M., & West, M. O. (1991). Representation of the body by single neurons in the dorsolateral striatum of the awake, unrestrained rat.Journal of Comparative Neurology, 309, 231–249.PubMedCrossRefGoogle Scholar
  12. Cho, A. (1990). Ice: A new dosage form of an old drug.Science, 249, 631.PubMedCrossRefGoogle Scholar
  13. Cole, S. O. (1977). Interaction of arena size with different measures of amphetamine effects.Pharmacology, Biochemistry and Behavior, 7, 181–184.CrossRefGoogle Scholar
  14. Creese, I., & Iversen, S. D. (1974). The role of forebrain dopamine systems in amphetamine-induced stereotyped behavior in the rat.Psychopharmacologia, 39, 345–357.PubMedCrossRefGoogle Scholar
  15. Di Chiara, G. (1995). The role of dopamine in drug abuse viewed from the perspective of its role in motivation.Drug and Alcohol Dependence, 38, 95–137.PubMedCrossRefGoogle Scholar
  16. Dominic, J. A., & Moore, K. E. (1969). Acute effects of a-methyltyrosine on brain catecholamine levels and on spontaneous and amphetamine-stimulated motor activity in mice.Archives of International Pharmacodynamics, 178, 166–176.Google Scholar
  17. Eichler, A. J., Antelman, S. M., & Black, C. A. (1980). Amphetamine stereotypy is not a homogenous phenomenon: Sniffing and licking show distinct profiles of sensitization and tolerance.Psychopharmacology, 68, 287–290.PubMedCrossRefGoogle Scholar
  18. Ellenbroek, B. A. (1993). Treatment of schizophrenia-A clinical and preclinical evaluation of neuroleptic drugs.Pharmacology and Therapeutics, 57, 1–78.PubMedCrossRefGoogle Scholar
  19. Ellinwood, E. H. (1967). Amphetamine psychosis: I. Description of the individuals and process.Journal of Nervous and Mental Disease, 144, 273–283.CrossRefGoogle Scholar
  20. Ellinwood, E. H., & Kilbey, M. M. (1975). Amphetamine stereotypy: The influence of environmental factors and prepotent behavioral patterns on its topography and development.Biological Psychiatry, 10, 3–16.PubMedGoogle Scholar
  21. Ellinwood, E. H., Sudilovsky, A., & Nelson, L. M. (1973). Evolving behavior in the clinical and experimental amphetamine (model) psychosis.American Journal of Psychiatry, 130, 1088–1093.PubMedGoogle Scholar
  22. Ellison, G. D., & Eison, M. S. (1983). Continuous amphetamine intoxication: An animal model of the acute psychotic episode.Psychological Medicine, 13, 751–761.PubMedCrossRefGoogle Scholar
  23. Exner, M., & Clark, D. (1993). Subtle variations in living conditions influence behavioural response to d-amphetamine.NeuroReport, 4, 1059–1062.PubMedCrossRefGoogle Scholar
  24. Fibiger, H. C., Fibiger, H. P, & Zis, A. P. (1973). Attenuation of amphetamine-induced motor stimulation and stereotypy by 6-hydroxydopamine in the rat.British Journal of Pharmacology, 47, 683–692.PubMedCrossRefGoogle Scholar
  25. Fillenz, M. (1995). Physiological release of excitatory amino acids.Behavioural Brain Research, 71, 51–67.PubMedCrossRefGoogle Scholar
  26. Gambil, J. D. & Kornetsky, C. (1976). Effects of chronic d-amphetamine on social behavior of the rat: Implications for an animal model of paranoid schizophrenia.Psychopharmacology (Berlin),50, 215–223.Google Scholar
  27. Gardiner, T. W., Iverson, D. A., & Rebec, G. V. (1988). Heterogeneous responses of neostriatal neurons to amphetamine in freely moving rats.Brain Research, 463, 268–274.PubMedCrossRefGoogle Scholar
  28. Gardiner, T. W, & Kitai, S.T. (1992). Single-unit activity in the globus pallidus and neostriatum of the rat during performance of a trained head movement.Experimental Brain Research, 88, 517–530.CrossRefGoogle Scholar
  29. Giros, B., Jaber, M., Jones, S. R., Wightman, R. M., & Caron, M. G. (1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter.Nature, 379, 606–612.PubMedCrossRefGoogle Scholar
  30. Groves, P. M. (1983). A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement.Brain Research Reviews, 5, 109–132.CrossRefGoogle Scholar
  31. Haracz, J. L., Tschanz, J. T., Wang, Z., White, I. M., & Rebec, G. V. (1993). Striatal single-unit responses to amphetamine and neuroleptics in freely moving rats.Neuroscience and Biobehavioral Reviews, 17, 1–12.PubMedCrossRefGoogle Scholar
  32. Heise, G. A., & Boff, E. (1971). Stimulant action of d-amphetamine in relation to test compartment dimensions and behavioral measure.Neuropharmacology, 10, 259–266.PubMedCrossRefGoogle Scholar
  33. Jackson, D. M., Johansson, C., Lindgren, L. M., & Bengtsson, A. (1994). Dopamine receptor antagonists block amphetamine and phencyclidine-induced motor stimulation in rats.Pharmacology, Biochemistry and Behavior, 48, 465–471.CrossRefGoogle Scholar
  34. Javitt, D. C., & Zukin, S. R. (1991). Mechanisms of phencyclidine (PCP)-n-methyl-d-aspartate (NMDA) receptor interaction-Implications for schizophrenia.Schizophrenia Research, 1, 13–19.Google Scholar
  35. Johnson, K. M. (1983). Phencyclidine: Behavioral and biochemical evidence supporting a role for dopamine.Federation Proceedings, 42, 2579–2583.PubMedGoogle Scholar
  36. Kalivas, P. W, & Duffy, P. A. (1991). Comparison of axonal and somatodendritic dopamine release using in vivo dialysis.Journal of Neurochemistry, 56, 961–967.PubMedCrossRefGoogle Scholar
  37. Kalivas, P. W., & Duffy, P. A. (1995). Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress.Brain Research, 675, 325–328.PubMedCrossRefGoogle Scholar
  38. Kalivas, P. W., & Stewart, J. (1991). Dopamine transmission in the initiation and expression of drug-induced and stress-induced sensitization of motor activity.Brain Research Reviews, 16, 223–244.PubMedCrossRefGoogle Scholar
  39. Karler, R., Chaudhry, I. A., Calder, L. D., Turkanis, S. A. (1990). Amphetamine behavioral sensitization and the excitatory amino acids.Brain Research, 537, 76–82.Google Scholar
  40. Kelley, A. E., & Throne, L. C. (1992). NMDA receptors mediate the behavioral effects of amphetamine infused into the nucleus accumbens.Brain Research Bulletin, 29, 247–254.PubMedCrossRefGoogle Scholar
  41. Kelley, A. E., Lang, C. G., & Gauthier, A. M. (1988). Induction of oral stereotypy following amphetamine microinjection into a discrete subregion of the striatum.Psychopharmacology, 95, 556–559.PubMedCrossRefGoogle Scholar
  42. Kelly, P H., Saviour, P. W, & Iversen, S. D. (1975). Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum.Brain Research, 94, 507–522.PubMedCrossRefGoogle Scholar
  43. Kiyatkin, E. A., & Rebec, G. V. (1996). Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats.Journal of Neurophysiology, 75, 142–153.PubMedGoogle Scholar
  44. Koelega, H. S. (1993). Stimulant drugs and vigilance performance-A review.Psychopharmacology, 111, 1–16.PubMedCrossRefGoogle Scholar
  45. Koob, G. E (1995). Animal models of drug addiction. In F. E. Bloom & D. J. Kupfer (Eds.),Psychopharmacology: The fourth generation of progress (pp. 759–772 ). New York: Raven.Google Scholar
  46. Kramer, J. C., Fischman, V. S., & Littlefield, D. C. (1967). Amphetamine abuse: Patterns and effects of high doses taken intravenously.Journal of the American Medical Association, 201, 305–309.PubMedCrossRefGoogle Scholar
  47. Kuczenski, R., & Segal, D. (1989). Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis.Journal of Neuroscience, 9, 2051–2065.PubMedGoogle Scholar
  48. Kuczenski, R., & Segal, D. S. (1992). Regional norepinephrine response to amphetamine using dialysisComparison with caudate dopamine.Synapse, 11, 164–169.PubMedCrossRefGoogle Scholar
  49. Kuczenski, R., & Segal, D. S. (1994). Neurochemistry of amphetamine. In A. Cho & D. S. Segal (Eds.),Amphetamine and its analogs (pp. 81–113 ). San Diego, CA: Academic Press.Google Scholar
  50. Kuczenski, R., Segal, D. S., Cho, A. K., & Melega, W. (1995). Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine.Journal of Neuroscience, 15, 1308–1317.PubMedGoogle Scholar
  51. Labarca, R., Gajardo, M. I., Seguel, M., Silva, H., Jerez, S., Ruiz, A., & Bustos, G. (1995). Effects of D-amphetamine administration on the release of endogenous excitatory amino acids in the rat nucleus accumbens.Progress in Neuro-Psychopharmacology & Biological Psychiatry, 19, 467–473.CrossRefGoogle Scholar
  52. Laties, V. G., & Weiss, B. (1981). The amphetamine margin in sports.Federation Proceedings, 40, 2689–2692.PubMedGoogle Scholar
  53. Lyon, M., & Robbins, T. W. (1975). The action of central nervous system stimulant drugs: A general theory concerning amphetamine effects. In E. Essman & L. Valzelli (Eds.),Current developments in psychopharmacology (Vol. 2, pp. 89–163 ). New York: Spectrum.Google Scholar
  54. Marshall, J. F., Odell, S. J., & Weihmuller, E B. (1993). Dopamine-glutamate interactions in methamphetamine-induced neurotoxicity.Journal of Neural Transmission, 91, 241–254.PubMedCrossRefGoogle Scholar
  55. Mazurski, E. J., & Beninger, R. J. (1988). Stimulant effects of apomorphine and (+)-Amphetamine in rats with varied habituation to test environment.Pharmacology, Biochemistry and Behavior, 29, 249–255.CrossRefGoogle Scholar
  56. McGeorge, A. J., & Faull, R. L. M. (1989). The organization of the projection from the cerebral cortex to the striatum in the rat.Neuroscience, 29, 503–537.PubMedCrossRefGoogle Scholar
  57. Meredith, G. E., Pennartz, C. M. A.,Groenewegen, H. J. (1993). The cellular framework for chemical signalling in the nucleus accumbens. In G. W. Arbuthnott & P C. Emson (Eds.), Chemical signalling in the basal ganglia. Progress in brain research(Vol. 99, pp. 3–24). Amsterdam: Elsevier.Google Scholar
  58. Moore, S., & Kenyon, P. (1994). Atypical antipsychotics, clozapine and sulpiride do not antagonise amphetamine-induced stereotyped locomotion.Psychopharmacology, 114, 123–130.PubMedCrossRefGoogle Scholar
  59. Mueller, K., Hollingsworth, E. M., & Cross, D. R. (1989). Another look at amphetamine-induced stereotyped locomotor activity in rats using a new statistic to measure locomotor stereotypy.Psychopharmacology, 97, 74–79.PubMedCrossRefGoogle Scholar
  60. Nash, J. E, & Yamamoto, B. K. (1993). Effect of D-amphetamine on the extracellular concentrations of glutamate and dopamine in iprindole-treated rats.Brain Research, 627, 1–8.PubMedCrossRefGoogle Scholar
  61. Pennartz, C. M. A., Groenewegen, H. J., & DaSilva, E H. L. (1994). The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integra-Google Scholar
  62. tion of behavioural, electrophysiological and anatomical data.Progress in Neurobiology, 42, 719–761.Google Scholar
  63. Pierce, R. C., & Rebec, G. V. (1995). lontophoresis in the neostriatum of awake, unrestrained rats: Differential effects of dopamine, glutamate, and ascorbate on motor-and nonmotor-related neurons.Neuroscience, 67, 313–324.Google Scholar
  64. Pierce, R. C., Rowlett, J. K., Rebec, G. V, & Bardo, M. T. (1995). Ascorbate potentiates amphetamine-induced conditioned place preference and forebrain dopamine release in rats.Brain Research, 688, 21–26.PubMedCrossRefGoogle Scholar
  65. Randrup, A., & Munkvad, I. (1970). Biochemical, anatomical, and physiological investigations of stereotyped behavior induced by amphetamine. In E. Costa & S. Garattini (Eds.),Amphetamines and related compounds (pp. 695–713 ). New York: Raven.Google Scholar
  66. Rebec, G. V. (1987). Electrophysiological pharmacology of amphetamine. In J. Marwah (Ed.),Monographs in neural science: Vol. 13. Neurobiology of drug abuse (pp. 1–33 ). Basal, Switzerland: Karger, Basal.Google Scholar
  67. Rebec, G. V. (1991). Changes in brain and behavior produced by amphetamine: A perspective based on microdialysis, voltammetry, and single-unit electrophysiology in freely moving animals, In R. R. Watson (Ed.),Biochemistry and physiology of substance abuse (Vol. III, pp. 93–115 ). Boca Raton, FL: CRC.Google Scholar
  68. Rebec, G. V., & Pierce, R. C. (1994). A vitamin as neuromodulator: Ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission.Progress in Neurobiology, 43, 537–565.PubMedCrossRefGoogle Scholar
  69. Rebec, G. V, & Segal, D. S. (1979). Enhanced responsiveness to intraventricular infusion of amphetamine following its repeated systemic administration.Psycho-pharmacology, 62. 101–102.CrossRefGoogle Scholar
  70. Rebec, G. V, & Segal, D. S. (1980). Apparent tolerance to some aspects of amphetamine stereotypy with longterm treatment.Pharmacology, Biochemistry and Behavior, 13, 793–797.CrossRefGoogle Scholar
  71. Rebec, G. V, & Bashore, T. R. (1984). Critical issues in assessing the behavioral effects of amphetamine.Neuroscience and Biobehavioral Reviews, 8, 153–159.PubMedCrossRefGoogle Scholar
  72. Rebec, G. V, Christensen, J. R. C., Guerra, C., & Bardo, M. T. (1997). Regional and temporal differences in dopamine efflux in the nucleus accumbens during free-choice novelty.Brain Research, 776, 61–67.PubMedCrossRefGoogle Scholar
  73. Rebec, G. V, White, I. M., & Puotz, J. K. (1997). Responses of neurons in dorsal striatum during amphetamine-induced focused stereotypy.Psychopharmacology, 130, 343–351.PubMedCrossRefGoogle Scholar
  74. Ricaurte, G. A., Sabol, K. E., & Seiden, L. S. (1994). Functional consequences of neurotoxic amphetamine exposure. In A. K. Cho & D. S. Segal (Eds.),Amphetamine and its analogs (pp. 297–313 ). New York: Academic Press.Google Scholar
  75. Ridley, R. M., & Baker, H. E (1982). Stereotypy in monkeys and humans.Psychological Medicine, 12, 61–72.PubMedCrossRefGoogle Scholar
  76. Robinson, T. E. (1991). The neurobiology of amphetamine psychosis-Evidence from studies with an animal model. In T. Nakazawa (Ed.),Biological basis of schizophrenic disorders. (Vol. 14, pp. 185–201 ). Tokyo: Japan Scientific Societies Press.Google Scholar
  77. Robinson, T. E., & Becker, J. B. (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis.Brain Research Reviews, 11, 157–198.CrossRefGoogle Scholar
  78. Rosa-Kenig, A., Puotz, J. K., & Rebec, G. V. (1993). Involvement of Dl and D2 dopamine receptors in amphetamine-induced changes in striatal activity in behaving rats.Brain Research, 619, 347–351.PubMedCrossRefGoogle Scholar
  79. Ryan, L. J., Young, S. J., Segal, D. S., & Groves, P. M. (1989). Antigromically identified striatonigral projection neurons in the chronically implanted behaving rat: Relations of cell firing to amphetamine-induced behaviors.Behavioral Neuroscience, 103, 3–14.PubMedCrossRefGoogle Scholar
  80. Ryan, L. J., Linder, J. C., Martone, M. E., & Groves, P. M. (1990). Histological and ultrastructural evidence that D-amphetamine causes degeneration in neostriatum and frontal cortex of rats.Brain Research, 518, 67–77.PubMedCrossRefGoogle Scholar
  81. Sato, M., Numachi, Y., & Hamamura, T. (1992). Relapse of paranoid psychotic state in methamphetamine model of schizophrenia.Schizophrenia Bulletin, 18, 115–122.PubMedCrossRefGoogle Scholar
  82. Schidrring, E. (1979). An open-field study of stereotyped locomotor activity in amphetamine-treated rats.Psychopharmacology (Berlin),66, 281–287.Google Scholar
  83. Schirrring, E. (1981). Psychopathology induced by “speed drugs.”Pharmacology, Biochemistry and Behavior, 14, 109–122.Google Scholar
  84. Segal, D. S. (1975). Behavioral and neurochemical correlates of repeated D-amphetamine administration. In A. J. Mandell (Ed.),Advances in biochemical psychopharmacology (pp. 247–266 ). New York: Raven.Google Scholar
  85. Segal, D. S., & Janowsky, D. S. (1978). Psychostimulantinduced behavioral effects: Possible models of schizophrenia. In A. Lipton, A. Di Mascio, & K. F. Killam (Eds.),Psychopharmacology: A generation of progress (pp. 1113–1123 ). New York: Raven.Google Scholar
  86. Segal, D. S., & Kuczenski, R. (1992). In vivo microdialysis reveals a diminished amphetamine-induced DA response corresponding to behavioral sensitization produced by repeated amphetamine pretreatment.Brain Research, 571, 330–337.PubMedCrossRefGoogle Scholar
  87. Segal, D. S., & Kuczenski, R. (1994). Behavioral pharmacology of amphetamine. In A. Cho & D. S. Segal (Eds.),Amphetamine and its analogs (pp. 115–149 ). San Diego, CA: Academic Press.Google Scholar
  88. Segal, D. S., Weinberger, S., Cahill, J., & McCunney, S. (1980). Multiple daily amphetamine administration: Behavioral and neurochemical alterations.Science, 207, 904–907.PubMedCrossRefGoogle Scholar
  89. Segal, D. S., Kuczenski, R., & Florin, S. M. (1995). Does dizocilpine (MK-801) selectively block the enhanced responsiveness to repeated amphetamine administration?Behavioral Neuroscience, 109, 532–546.PubMedCrossRefGoogle Scholar
  90. Seiden, L. S., Sabol, K. E., & Ricaurte, G. A. (1993). Amphetamine: Effects on catecholamine systems and behavior.Annual Review of Pharmacology and Toxicology, 33, 639–677.PubMedCrossRefGoogle Scholar
  91. Sharp, T., Zetterstrom, T., Ljungberg, T., & Ungerstedt, U. (1987). A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis.Brain Research, 401, 322–330.PubMedCrossRefGoogle Scholar
  92. Smith, A. D., & Bolam, J. P. (1990). The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones.Trends in Neurosciences, 13, 259–265.PubMedCrossRefGoogle Scholar
  93. Snyder, S. H. (1973). Amphetamine psychosis: A “model” schizophrenia mediated by catecholamines.American Journal of Psychiatry 130, 61–67.PubMedGoogle Scholar
  94. Steinpreis, R. E., Sokolowski, J. D., Papanikolaou, A., & Salamone, J. D. (1994). The effects of haloperidol and clozapine on PCP- and amphetamine-induced suppression of social behavior in the rat.Pharmacology, Biochemistry and Behavior, 47, 579–585.CrossRefGoogle Scholar
  95. Stephans, S. E., & Yamamoto, B. K. (1994). Methamphetamine-induced neurotoxicity: Roles for glutamate and dopamine efflux.Synapse, 17, 203–209.PubMedCrossRefGoogle Scholar
  96. Stevens, J., Livermore, A., & Cronan, J. (1977). Effects of deafening and blindfolding on amphetamine-induced stereotypy in the cat.Physiology and Behavior, 18, 809–812.PubMedCrossRefGoogle Scholar
  97. Stewart, J., & Eikelboom, R. (1987). Conditioned drug effects. In L. L. Iversen, S. D. Iversen, & S. H. Snyder (Eds.),Handbook of psychopharmacology (Vol. 19, pp. I - 57 ). New York: Plenum.Google Scholar
  98. Sulzer, D., & Rayport, S. (1990). Amphetamine and other psychostimulants reduce ph gradients in midbrain dopaminergic neurons and chromaffin granules-A mechanism of action.Neuron, 5, 797–808.PubMedCrossRefGoogle Scholar
  99. Tolbert, L. C., Thomas T. N., Middaugh, L. D., & Zemp, J. W (1979). Effect of ascorbic acid on neurochemical, behavioral, and physiological systems mediated by catecholamines.Life Science, 25, 2189–2185.CrossRefGoogle Scholar
  100. Tschanz, J. T., & Rebec, G. V. (1988). Atypical antipsychotic drugs block selective components of amphetamine-inducedstereotypy. Pharmacology Biochemistry and Behavior, 31, 519–522.CrossRefGoogle Scholar
  101. Tschanz, J. T., Haracz, J. L., Griffith, K. E., & Rebec, G. V. (1991). Bilateral cortical ablations attenuate amphetamine-induced excitations of neostriatal motor-related neurons in freely moving rats.Neuroscience Letters, 134, 127–130.PubMedCrossRefGoogle Scholar
  102. Urba-Holmgren, R., Holmgren, B., & Aguiar, M. (1977). Circadian variation in an amphetamine-induced motor response.Pharmacology, Biochemistry and Behavior, 7, 571–572.CrossRefGoogle Scholar
  103. Walaas, I. (1981). Biochemical evidence for overlapping neocortical and allocortical glutamate projections to the nucleus accumbens and rostral caudatoputamen in the rat brain.Neuroscience, 6, 399–405.PubMedCrossRefGoogle Scholar
  104. Wambebe, C., & Sokomba, E. (1986). Some behavioral and EEG effects of ascorbic acid in rats.Psychopharmacology, 89, 167–170.PubMedCrossRefGoogle Scholar
  105. Wang, Z. R., & Rebec, G. V. (1993). Neuronal and behavioral correlates of intrastriatal infusions of amphetamine in freely moving rats.Brain Research, 627, 79–88.PubMedCrossRefGoogle Scholar
  106. Wang, Z. R., Bonta, M., & Rebec, G. V. (1994). Neuroethopharmacology of amphetamine and antipsychotic drugs in nucleus accumbens and amygdala of socially interacting rats.Society for Neuroscience Abstracts, 20, 1030.Google Scholar
  107. West, M. O., Michael, A. J., Knowles, S. E., Chapin, J. K., & Woodward, D. J. (1987). Striatal unit activity and the linkage between sensory and motor events. In J. S. Schneider & T. I. Lidsky (Eds.),Basal ganglia and behavior: Sensory aspects of motor functioning (pp. 27–35 ). Toronto, Ontario, Canada: Huber.Google Scholar
  108. White, I. M., Flory, G. S., Hooper, K. C., Speciale, J., Banks, D. A., & Rebec, G. V. (1995). Phencyclidine-induced excitation of striatal neurons in behaving rats: Reversal by haloperidol and clozapine.Journal of Neural Transmission, 102, 99–112.PubMedCrossRefGoogle Scholar
  109. White, L. K., Maurer, M., Kraft, M. E., Oh, C., & Rebec, G. V. (1990). Intrastriatal infusions of ascorbate antagonize the behavioral response to amphetamine.Pharmacology, Biochemistry and Behavior, 36, 485–489.CrossRefGoogle Scholar
  110. Wolf, M. E., & Khansa, M. R. (1991). Repeated administration of MK-801 produces sensitization to its own locomotor stimulant effects but blocks sensitization to amphetamine.Brain Research, 562, 164–168.Google Scholar
  111. Zahm, D. S., & Brog, J. S. (1992). On the significance of subterritories in the accumbens part of the rat ventral striatum.Neuroscience, 50, 751–767.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • George V. Rebec
    • 1
  1. 1.Program in Neural Science, Department of PsychologyIndiana UniversityBloomingtonUSA

Personalised recommendations