Skip to main content

Behavioral Pharmacology of Amphetamines

  • Chapter
Handbook of Substance Abuse

Abstract

Originally sold as a bronchodilator in the early 1930s, amphetamine soon became known for its stimulant effects on behavior (Angrist, 1983). The drug has been used to overcome fatigue and to improve performance on certain types of motor or cognitive tasks (Koelega, 1993; Laties & Weiss, 1981). These stimulant effects often occur in conjunction with feelings of euphoria, a combination that has led to the widespread abuse of amphetamine and its analogs, including a pure form of methamphetamine known as “ice,” which emerged on the recreational drug scene in the late 1980s (Cho, 1990). Invariably, abuse of these drugs induces a psychosis that is clinically similar to paranoid schizophrenia (Akiyama, Hamamura, Ujike, Kanzaki, & Otsuki, 1991; Snyder, 1973).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, S. H., Stinus, L., LeMoal, M., & Cador, M. (1995). Social deprivation enhances the vulnerability of male Wistar rats to stressor-and amphetamine-induced behavioral sensitization.Psychopharmacology, 117, 116–124.

    Article  PubMed  CAS  Google Scholar 

  • Akiyama, K., Hamamura, T., Ujike, H., Kanzaki, A., & Otsuki, S. (1991). Methamphetamine psychosis as a model of relapse of schizophrenia-A behavioral and biochemical study in the animal model. In T. Nakazawa (Ed.),Biological basis of schizophrenic disorders (Vol. 14, pp. 169–184 ). Tokyo: Japan Scientific Societies Press.

    Google Scholar 

  • Akiyama, K., Kanzaki, A., Tsuchida, K., & Ujike, H. (1994). Methamphetamine-induced behavioral sensitization and its implications for relapse of schizophrenia.Schizophrenia Research, /2, 251–257.

    Google Scholar 

  • Aldridge, J. W, Berridge, K. C., Herman, M., & Zimmer L. (1993). Neuronal coding of serial order: Syntax of grooming in the neostriatum.Psychological Science, 4, 391–395.

    Article  Google Scholar 

  • Angrist, B. (1983). Psychoses induced by central nervous system stimulants and related drugs. In I. Creese (Ed.),Stimulants: neurochemical, behavioral, and clinical perspectives (pp. 1–30 ). New York: Raven.

    Google Scholar 

  • Antelman, S. M., & Chiodo, L. A. (1983). Amphetamine as a stressor. In I. Creese (Ed.),Stimulants: neurochemical, behavioral and clinical perspectives (pp. 269–299 ). New York: Raven.

    Google Scholar 

  • Bardo, M. T., Bowling, S. L., Rowlett, J. K., Mander-scheid, P, Buxton, S. T., & Dwoskin, L. P. (1995). Environmental enrichment attenuates locomotor sensitization, but not in vitro dopamine release, induced by amphetamine.Pharmacology, Biochemistry and Behavior, 51, 397–405.

    Article  CAS  Google Scholar 

  • Bowling, S. L., Rowlett, J. K., & Bardo, M. T. (1993). The effect of environmental enrichment on amphetamine-stimulated locomotor activity, dopamine synthesis and dopamine release.Neuropharmacology, 32, 885–893.

    Article  PubMed  CAS  Google Scholar 

  • Braestrup, C. (1977). Changes in drug-induced stereotyped behavior after 6-OHDA lesions in noradrenaline neurons.Psychopharmacology, 51, 199–204.

    Article  PubMed  CAS  Google Scholar 

  • Breese, G. R., Cooper, B. R., & Mueller, R. A. (1974). Evidence for involvement of 5-hydroxytryptamine in the actions of amphetamine.British Journal of Pharmacology, 52, 307–314.

    Article  PubMed  CAS  Google Scholar 

  • Carelli, R. M., & West, M. O. (1991). Representation of the body by single neurons in the dorsolateral striatum of the awake, unrestrained rat.Journal of Comparative Neurology, 309, 231–249.

    Article  PubMed  CAS  Google Scholar 

  • Cho, A. (1990). Ice: A new dosage form of an old drug.Science, 249, 631.

    Article  PubMed  CAS  Google Scholar 

  • Cole, S. O. (1977). Interaction of arena size with different measures of amphetamine effects.Pharmacology, Biochemistry and Behavior, 7, 181–184.

    Article  CAS  Google Scholar 

  • Creese, I., & Iversen, S. D. (1974). The role of forebrain dopamine systems in amphetamine-induced stereotyped behavior in the rat.Psychopharmacologia, 39, 345–357.

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara, G. (1995). The role of dopamine in drug abuse viewed from the perspective of its role in motivation.Drug and Alcohol Dependence, 38, 95–137.

    Article  PubMed  Google Scholar 

  • Dominic, J. A., & Moore, K. E. (1969). Acute effects of a-methyltyrosine on brain catecholamine levels and on spontaneous and amphetamine-stimulated motor activity in mice.Archives of International Pharmacodynamics, 178, 166–176.

    CAS  Google Scholar 

  • Eichler, A. J., Antelman, S. M., & Black, C. A. (1980). Amphetamine stereotypy is not a homogenous phenomenon: Sniffing and licking show distinct profiles of sensitization and tolerance.Psychopharmacology, 68, 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek, B. A. (1993). Treatment of schizophrenia-A clinical and preclinical evaluation of neuroleptic drugs.Pharmacology and Therapeutics, 57, 1–78.

    Article  PubMed  CAS  Google Scholar 

  • Ellinwood, E. H. (1967). Amphetamine psychosis: I. Description of the individuals and process.Journal of Nervous and Mental Disease, 144, 273–283.

    Article  Google Scholar 

  • Ellinwood, E. H., & Kilbey, M. M. (1975). Amphetamine stereotypy: The influence of environmental factors and prepotent behavioral patterns on its topography and development.Biological Psychiatry, 10, 3–16.

    PubMed  Google Scholar 

  • Ellinwood, E. H., Sudilovsky, A., & Nelson, L. M. (1973). Evolving behavior in the clinical and experimental amphetamine (model) psychosis.American Journal of Psychiatry, 130, 1088–1093.

    PubMed  Google Scholar 

  • Ellison, G. D., & Eison, M. S. (1983). Continuous amphetamine intoxication: An animal model of the acute psychotic episode.Psychological Medicine, 13, 751–761.

    Article  PubMed  CAS  Google Scholar 

  • Exner, M., & Clark, D. (1993). Subtle variations in living conditions influence behavioural response to d-amphetamine.NeuroReport, 4, 1059–1062.

    Article  PubMed  CAS  Google Scholar 

  • Fibiger, H. C., Fibiger, H. P, & Zis, A. P. (1973). Attenuation of amphetamine-induced motor stimulation and stereotypy by 6-hydroxydopamine in the rat.British Journal of Pharmacology, 47, 683–692.

    Article  PubMed  CAS  Google Scholar 

  • Fillenz, M. (1995). Physiological release of excitatory amino acids.Behavioural Brain Research, 71, 51–67.

    Article  PubMed  CAS  Google Scholar 

  • Gambil, J. D. & Kornetsky, C. (1976). Effects of chronic d-amphetamine on social behavior of the rat: Implications for an animal model of paranoid schizophrenia.Psychopharmacology (Berlin),50, 215–223.

    Google Scholar 

  • Gardiner, T. W., Iverson, D. A., & Rebec, G. V. (1988). Heterogeneous responses of neostriatal neurons to amphetamine in freely moving rats.Brain Research, 463, 268–274.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner, T. W, & Kitai, S.T. (1992). Single-unit activity in the globus pallidus and neostriatum of the rat during performance of a trained head movement.Experimental Brain Research, 88, 517–530.

    Article  CAS  Google Scholar 

  • Giros, B., Jaber, M., Jones, S. R., Wightman, R. M., & Caron, M. G. (1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter.Nature, 379, 606–612.

    Article  PubMed  CAS  Google Scholar 

  • Groves, P. M. (1983). A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement.Brain Research Reviews, 5, 109–132.

    Article  Google Scholar 

  • Haracz, J. L., Tschanz, J. T., Wang, Z., White, I. M., & Rebec, G. V. (1993). Striatal single-unit responses to amphetamine and neuroleptics in freely moving rats.Neuroscience and Biobehavioral Reviews, 17, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Heise, G. A., & Boff, E. (1971). Stimulant action of d-amphetamine in relation to test compartment dimensions and behavioral measure.Neuropharmacology, 10, 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, D. M., Johansson, C., Lindgren, L. M., & Bengtsson, A. (1994). Dopamine receptor antagonists block amphetamine and phencyclidine-induced motor stimulation in rats.Pharmacology, Biochemistry and Behavior, 48, 465–471.

    Article  CAS  Google Scholar 

  • Javitt, D. C., & Zukin, S. R. (1991). Mechanisms of phencyclidine (PCP)-n-methyl-d-aspartate (NMDA) receptor interaction-Implications for schizophrenia.Schizophrenia Research, 1, 13–19.

    Google Scholar 

  • Johnson, K. M. (1983). Phencyclidine: Behavioral and biochemical evidence supporting a role for dopamine.Federation Proceedings, 42, 2579–2583.

    PubMed  CAS  Google Scholar 

  • Kalivas, P. W, & Duffy, P. A. (1991). Comparison of axonal and somatodendritic dopamine release using in vivo dialysis.Journal of Neurochemistry, 56, 961–967.

    Article  PubMed  CAS  Google Scholar 

  • Kalivas, P. W., & Duffy, P. A. (1995). Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress.Brain Research, 675, 325–328.

    Article  PubMed  CAS  Google Scholar 

  • Kalivas, P. W., & Stewart, J. (1991). Dopamine transmission in the initiation and expression of drug-induced and stress-induced sensitization of motor activity.Brain Research Reviews, 16, 223–244.

    Article  PubMed  CAS  Google Scholar 

  • Karler, R., Chaudhry, I. A., Calder, L. D., Turkanis, S. A. (1990). Amphetamine behavioral sensitization and the excitatory amino acids.Brain Research, 537, 76–82.

    Google Scholar 

  • Kelley, A. E., & Throne, L. C. (1992). NMDA receptors mediate the behavioral effects of amphetamine infused into the nucleus accumbens.Brain Research Bulletin, 29, 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, A. E., Lang, C. G., & Gauthier, A. M. (1988). Induction of oral stereotypy following amphetamine microinjection into a discrete subregion of the striatum.Psychopharmacology, 95, 556–559.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, P H., Saviour, P. W, & Iversen, S. D. (1975). Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum.Brain Research, 94, 507–522.

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin, E. A., & Rebec, G. V. (1996). Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats.Journal of Neurophysiology, 75, 142–153.

    PubMed  CAS  Google Scholar 

  • Koelega, H. S. (1993). Stimulant drugs and vigilance performance-A review.Psychopharmacology, 111, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Koob, G. E (1995). Animal models of drug addiction. In F. E. Bloom & D. J. Kupfer (Eds.),Psychopharmacology: The fourth generation of progress (pp. 759–772 ). New York: Raven.

    Google Scholar 

  • Kramer, J. C., Fischman, V. S., & Littlefield, D. C. (1967). Amphetamine abuse: Patterns and effects of high doses taken intravenously.Journal of the American Medical Association, 201, 305–309.

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski, R., & Segal, D. (1989). Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis.Journal of Neuroscience, 9, 2051–2065.

    PubMed  CAS  Google Scholar 

  • Kuczenski, R., & Segal, D. S. (1992). Regional norepinephrine response to amphetamine using dialysisComparison with caudate dopamine.Synapse, 11, 164–169.

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski, R., & Segal, D. S. (1994). Neurochemistry of amphetamine. In A. Cho & D. S. Segal (Eds.),Amphetamine and its analogs (pp. 81–113 ). San Diego, CA: Academic Press.

    Google Scholar 

  • Kuczenski, R., Segal, D. S., Cho, A. K., & Melega, W. (1995). Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine.Journal of Neuroscience, 15, 1308–1317.

    PubMed  CAS  Google Scholar 

  • Labarca, R., Gajardo, M. I., Seguel, M., Silva, H., Jerez, S., Ruiz, A., & Bustos, G. (1995). Effects of D-amphetamine administration on the release of endogenous excitatory amino acids in the rat nucleus accumbens.Progress in Neuro-Psychopharmacology & Biological Psychiatry, 19, 467–473.

    Article  CAS  Google Scholar 

  • Laties, V. G., & Weiss, B. (1981). The amphetamine margin in sports.Federation Proceedings, 40, 2689–2692.

    PubMed  CAS  Google Scholar 

  • Lyon, M., & Robbins, T. W. (1975). The action of central nervous system stimulant drugs: A general theory concerning amphetamine effects. In E. Essman & L. Valzelli (Eds.),Current developments in psychopharmacology (Vol. 2, pp. 89–163 ). New York: Spectrum.

    Google Scholar 

  • Marshall, J. F., Odell, S. J., & Weihmuller, E B. (1993). Dopamine-glutamate interactions in methamphetamine-induced neurotoxicity.Journal of Neural Transmission, 91, 241–254.

    Article  PubMed  CAS  Google Scholar 

  • Mazurski, E. J., & Beninger, R. J. (1988). Stimulant effects of apomorphine and (+)-Amphetamine in rats with varied habituation to test environment.Pharmacology, Biochemistry and Behavior, 29, 249–255.

    Article  CAS  Google Scholar 

  • McGeorge, A. J., & Faull, R. L. M. (1989). The organization of the projection from the cerebral cortex to the striatum in the rat.Neuroscience, 29, 503–537.

    Article  PubMed  CAS  Google Scholar 

  • Meredith, G. E., Pennartz, C. M. A.,Groenewegen, H. J. (1993). The cellular framework for chemical signalling in the nucleus accumbens. In G. W. Arbuthnott & P C. Emson (Eds.), Chemical signalling in the basal ganglia. Progress in brain research(Vol. 99, pp. 3–24). Amsterdam: Elsevier.

    Google Scholar 

  • Moore, S., & Kenyon, P. (1994). Atypical antipsychotics, clozapine and sulpiride do not antagonise amphetamine-induced stereotyped locomotion.Psychopharmacology, 114, 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, K., Hollingsworth, E. M., & Cross, D. R. (1989). Another look at amphetamine-induced stereotyped locomotor activity in rats using a new statistic to measure locomotor stereotypy.Psychopharmacology, 97, 74–79.

    Article  PubMed  CAS  Google Scholar 

  • Nash, J. E, & Yamamoto, B. K. (1993). Effect of D-amphetamine on the extracellular concentrations of glutamate and dopamine in iprindole-treated rats.Brain Research, 627, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Pennartz, C. M. A., Groenewegen, H. J., & DaSilva, E H. L. (1994). The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integra-

    Google Scholar 

  • tion of behavioural, electrophysiological and anatomical data.Progress in Neurobiology, 42, 719–761.

    Google Scholar 

  • Pierce, R. C., & Rebec, G. V. (1995). lontophoresis in the neostriatum of awake, unrestrained rats: Differential effects of dopamine, glutamate, and ascorbate on motor-and nonmotor-related neurons.Neuroscience, 67, 313–324.

    Google Scholar 

  • Pierce, R. C., Rowlett, J. K., Rebec, G. V, & Bardo, M. T. (1995). Ascorbate potentiates amphetamine-induced conditioned place preference and forebrain dopamine release in rats.Brain Research, 688, 21–26.

    Article  PubMed  CAS  Google Scholar 

  • Randrup, A., & Munkvad, I. (1970). Biochemical, anatomical, and physiological investigations of stereotyped behavior induced by amphetamine. In E. Costa & S. Garattini (Eds.),Amphetamines and related compounds (pp. 695–713 ). New York: Raven.

    Google Scholar 

  • Rebec, G. V. (1987). Electrophysiological pharmacology of amphetamine. In J. Marwah (Ed.),Monographs in neural science: Vol. 13. Neurobiology of drug abuse (pp. 1–33 ). Basal, Switzerland: Karger, Basal.

    Google Scholar 

  • Rebec, G. V. (1991). Changes in brain and behavior produced by amphetamine: A perspective based on microdialysis, voltammetry, and single-unit electrophysiology in freely moving animals, In R. R. Watson (Ed.),Biochemistry and physiology of substance abuse (Vol. III, pp. 93–115 ). Boca Raton, FL: CRC.

    Google Scholar 

  • Rebec, G. V., & Pierce, R. C. (1994). A vitamin as neuromodulator: Ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission.Progress in Neurobiology, 43, 537–565.

    Article  PubMed  CAS  Google Scholar 

  • Rebec, G. V, & Segal, D. S. (1979). Enhanced responsiveness to intraventricular infusion of amphetamine following its repeated systemic administration.Psycho-pharmacology, 62. 101–102.

    Article  CAS  Google Scholar 

  • Rebec, G. V, & Segal, D. S. (1980). Apparent tolerance to some aspects of amphetamine stereotypy with longterm treatment.Pharmacology, Biochemistry and Behavior, 13, 793–797.

    Article  CAS  Google Scholar 

  • Rebec, G. V, & Bashore, T. R. (1984). Critical issues in assessing the behavioral effects of amphetamine.Neuroscience and Biobehavioral Reviews, 8, 153–159.

    Article  PubMed  CAS  Google Scholar 

  • Rebec, G. V, Christensen, J. R. C., Guerra, C., & Bardo, M. T. (1997). Regional and temporal differences in dopamine efflux in the nucleus accumbens during free-choice novelty.Brain Research, 776, 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Rebec, G. V, White, I. M., & Puotz, J. K. (1997). Responses of neurons in dorsal striatum during amphetamine-induced focused stereotypy.Psychopharmacology, 130, 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte, G. A., Sabol, K. E., & Seiden, L. S. (1994). Functional consequences of neurotoxic amphetamine exposure. In A. K. Cho & D. S. Segal (Eds.),Amphetamine and its analogs (pp. 297–313 ). New York: Academic Press.

    Google Scholar 

  • Ridley, R. M., & Baker, H. E (1982). Stereotypy in monkeys and humans.Psychological Medicine, 12, 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, T. E. (1991). The neurobiology of amphetamine psychosis-Evidence from studies with an animal model. In T. Nakazawa (Ed.),Biological basis of schizophrenic disorders. (Vol. 14, pp. 185–201 ). Tokyo: Japan Scientific Societies Press.

    Google Scholar 

  • Robinson, T. E., & Becker, J. B. (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis.Brain Research Reviews, 11, 157–198.

    Article  CAS  Google Scholar 

  • Rosa-Kenig, A., Puotz, J. K., & Rebec, G. V. (1993). Involvement of Dl and D2 dopamine receptors in amphetamine-induced changes in striatal activity in behaving rats.Brain Research, 619, 347–351.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, L. J., Young, S. J., Segal, D. S., & Groves, P. M. (1989). Antigromically identified striatonigral projection neurons in the chronically implanted behaving rat: Relations of cell firing to amphetamine-induced behaviors.Behavioral Neuroscience, 103, 3–14.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, L. J., Linder, J. C., Martone, M. E., & Groves, P. M. (1990). Histological and ultrastructural evidence that D-amphetamine causes degeneration in neostriatum and frontal cortex of rats.Brain Research, 518, 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Sato, M., Numachi, Y., & Hamamura, T. (1992). Relapse of paranoid psychotic state in methamphetamine model of schizophrenia.Schizophrenia Bulletin, 18, 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Schidrring, E. (1979). An open-field study of stereotyped locomotor activity in amphetamine-treated rats.Psychopharmacology (Berlin),66, 281–287.

    Google Scholar 

  • Schirrring, E. (1981). Psychopathology induced by “speed drugs.”Pharmacology, Biochemistry and Behavior, 14, 109–122.

    Google Scholar 

  • Segal, D. S. (1975). Behavioral and neurochemical correlates of repeated D-amphetamine administration. In A. J. Mandell (Ed.),Advances in biochemical psychopharmacology (pp. 247–266 ). New York: Raven.

    Google Scholar 

  • Segal, D. S., & Janowsky, D. S. (1978). Psychostimulantinduced behavioral effects: Possible models of schizophrenia. In A. Lipton, A. Di Mascio, & K. F. Killam (Eds.),Psychopharmacology: A generation of progress (pp. 1113–1123 ). New York: Raven.

    Google Scholar 

  • Segal, D. S., & Kuczenski, R. (1992). In vivo microdialysis reveals a diminished amphetamine-induced DA response corresponding to behavioral sensitization produced by repeated amphetamine pretreatment.Brain Research, 571, 330–337.

    Article  PubMed  CAS  Google Scholar 

  • Segal, D. S., & Kuczenski, R. (1994). Behavioral pharmacology of amphetamine. In A. Cho & D. S. Segal (Eds.),Amphetamine and its analogs (pp. 115–149 ). San Diego, CA: Academic Press.

    Google Scholar 

  • Segal, D. S., Weinberger, S., Cahill, J., & McCunney, S. (1980). Multiple daily amphetamine administration: Behavioral and neurochemical alterations.Science, 207, 904–907.

    Article  PubMed  CAS  Google Scholar 

  • Segal, D. S., Kuczenski, R., & Florin, S. M. (1995). Does dizocilpine (MK-801) selectively block the enhanced responsiveness to repeated amphetamine administration?Behavioral Neuroscience, 109, 532–546.

    Article  PubMed  CAS  Google Scholar 

  • Seiden, L. S., Sabol, K. E., & Ricaurte, G. A. (1993). Amphetamine: Effects on catecholamine systems and behavior.Annual Review of Pharmacology and Toxicology, 33, 639–677.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, T., Zetterstrom, T., Ljungberg, T., & Ungerstedt, U. (1987). A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis.Brain Research, 401, 322–330.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A. D., & Bolam, J. P. (1990). The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones.Trends in Neurosciences, 13, 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S. H. (1973). Amphetamine psychosis: A “model” schizophrenia mediated by catecholamines.American Journal of Psychiatry 130, 61–67.

    PubMed  CAS  Google Scholar 

  • Steinpreis, R. E., Sokolowski, J. D., Papanikolaou, A., & Salamone, J. D. (1994). The effects of haloperidol and clozapine on PCP- and amphetamine-induced suppression of social behavior in the rat.Pharmacology, Biochemistry and Behavior, 47, 579–585.

    Article  CAS  Google Scholar 

  • Stephans, S. E., & Yamamoto, B. K. (1994). Methamphetamine-induced neurotoxicity: Roles for glutamate and dopamine efflux.Synapse, 17, 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, J., Livermore, A., & Cronan, J. (1977). Effects of deafening and blindfolding on amphetamine-induced stereotypy in the cat.Physiology and Behavior, 18, 809–812.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, J., & Eikelboom, R. (1987). Conditioned drug effects. In L. L. Iversen, S. D. Iversen, & S. H. Snyder (Eds.),Handbook of psychopharmacology (Vol. 19, pp. I - 57 ). New York: Plenum.

    Google Scholar 

  • Sulzer, D., & Rayport, S. (1990). Amphetamine and other psychostimulants reduce ph gradients in midbrain dopaminergic neurons and chromaffin granules-A mechanism of action.Neuron, 5, 797–808.

    Article  PubMed  CAS  Google Scholar 

  • Tolbert, L. C., Thomas T. N., Middaugh, L. D., & Zemp, J. W (1979). Effect of ascorbic acid on neurochemical, behavioral, and physiological systems mediated by catecholamines.Life Science, 25, 2189–2185.

    Article  CAS  Google Scholar 

  • Tschanz, J. T., & Rebec, G. V. (1988). Atypical antipsychotic drugs block selective components of amphetamine-inducedstereotypy. Pharmacology Biochemistry and Behavior, 31, 519–522.

    Article  CAS  Google Scholar 

  • Tschanz, J. T., Haracz, J. L., Griffith, K. E., & Rebec, G. V. (1991). Bilateral cortical ablations attenuate amphetamine-induced excitations of neostriatal motor-related neurons in freely moving rats.Neuroscience Letters, 134, 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Urba-Holmgren, R., Holmgren, B., & Aguiar, M. (1977). Circadian variation in an amphetamine-induced motor response.Pharmacology, Biochemistry and Behavior, 7, 571–572.

    Article  CAS  Google Scholar 

  • Walaas, I. (1981). Biochemical evidence for overlapping neocortical and allocortical glutamate projections to the nucleus accumbens and rostral caudatoputamen in the rat brain.Neuroscience, 6, 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Wambebe, C., & Sokomba, E. (1986). Some behavioral and EEG effects of ascorbic acid in rats.Psychopharmacology, 89, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z. R., & Rebec, G. V. (1993). Neuronal and behavioral correlates of intrastriatal infusions of amphetamine in freely moving rats.Brain Research, 627, 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z. R., Bonta, M., & Rebec, G. V. (1994). Neuroethopharmacology of amphetamine and antipsychotic drugs in nucleus accumbens and amygdala of socially interacting rats.Society for Neuroscience Abstracts, 20, 1030.

    Google Scholar 

  • West, M. O., Michael, A. J., Knowles, S. E., Chapin, J. K., & Woodward, D. J. (1987). Striatal unit activity and the linkage between sensory and motor events. In J. S. Schneider & T. I. Lidsky (Eds.),Basal ganglia and behavior: Sensory aspects of motor functioning (pp. 27–35 ). Toronto, Ontario, Canada: Huber.

    Google Scholar 

  • White, I. M., Flory, G. S., Hooper, K. C., Speciale, J., Banks, D. A., & Rebec, G. V. (1995). Phencyclidine-induced excitation of striatal neurons in behaving rats: Reversal by haloperidol and clozapine.Journal of Neural Transmission, 102, 99–112.

    Article  PubMed  CAS  Google Scholar 

  • White, L. K., Maurer, M., Kraft, M. E., Oh, C., & Rebec, G. V. (1990). Intrastriatal infusions of ascorbate antagonize the behavioral response to amphetamine.Pharmacology, Biochemistry and Behavior, 36, 485–489.

    Article  CAS  Google Scholar 

  • Wolf, M. E., & Khansa, M. R. (1991). Repeated administration of MK-801 produces sensitization to its own locomotor stimulant effects but blocks sensitization to amphetamine.Brain Research, 562, 164–168.

    Google Scholar 

  • Zahm, D. S., & Brog, J. S. (1992). On the significance of subterritories in the accumbens part of the rat ventral striatum.Neuroscience, 50, 751–767.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rebec, G.V. (1998). Behavioral Pharmacology of Amphetamines. In: Tarter, R.E., Ammerman, R.T., Ott, P.J. (eds) Handbook of Substance Abuse. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2913-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2913-9_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3297-6

  • Online ISBN: 978-1-4757-2913-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics